【題目】已知四棱錐P﹣ABCD的底面是菱形,PA⊥面ABCD,PA=AD=2,∠ABC=60°,E為PD中點(diǎn).
(1)求證:PB∥平面ACE;
(2)求二面角E﹣AC﹣D的正切值.
【答案】
(1)證明:記BD∩AC=O,連結(jié)OE.
∵四棱錐P﹣ABCD的底面是菱形,∴O為BD中點(diǎn).
又∵E為PD中點(diǎn),∴EO∥PB
又∵PB平面ACE,EO平面ACE,
故PB∥平面ACE
(2)解:如圖,取AD的中點(diǎn)F,過F作FG⊥AC,垂足為點(diǎn)G,
連接EG,則∠EGF為二面角E﹣AC﹣D的平面角,
在Rt△∠EFG中, ,故 ,
即二面角E﹣AC﹣D的正切值為 .
【解析】(1)記BD∩AC=O,連結(jié)OE,推導(dǎo)出EO∥PB,由經(jīng)能證明PB∥平面ACE.(2)取AD的中點(diǎn)F,過F作FG⊥AC,垂足為點(diǎn)G,連接EG,則∠EGF為二面角E﹣AC﹣D的平面角,由此能求出二面角E﹣AC﹣D的正切值.
【考點(diǎn)精析】利用直線與平面平行的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) 、 為平面向量,若存在不全為零的實(shí)數(shù)λ,μ使得λ +μ =0,則稱 、 線性相關(guān),下面的命題中, 、 、 均為已知平面M上的向量. ①若 =2 ,則 、 線性相關(guān);
②若 、 為非零向量,且 ⊥ ,則 、 線性相關(guān);
③若 、 線性相關(guān), 、 線性相關(guān),則 、 線性相關(guān);
④向量 、 線性相關(guān)的充要條件是 、 共線.
上述命題中正確的是(寫出所有正確命題的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2ax2+4(a﹣3)x+5在區(qū)間(﹣∞,3)上是減函數(shù),則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,對(duì)于 上的任意x1 , x2 , 有如下條件:
① ;②|x1|>x2;③x1>|x2|;④ .
其中能使g(x1)>g(x2)恒成立的條件序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0.
(Ⅰ)若方程f(x)﹣x=0有唯一實(shí)數(shù)根,求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)f(x)在區(qū)間[﹣1,2]上的最大值與最小值;
(Ⅲ)當(dāng)x≥2時(shí),不等式f(x)≥2﹣a恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加班級(jí)工作 | 不太主動(dòng)參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法點(diǎn)撥:學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?并說明理由.(參考下表)
p(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.789 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2 . (Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)y=f(t)是某港口水的深度y(米)關(guān)于時(shí)間t(時(shí))的函數(shù),其中0≤t≤24.下表是該港口某一天從0時(shí)至24時(shí)記錄的時(shí)間t與水深y的關(guān)系表:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 5 | 7.5 | 5 | 2.5 | 5 | 7.5 | 5 | 2.5 | 5 |
經(jīng)長(zhǎng)期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=k+Asin(ωt+φ)的圖象.下面的函數(shù)中,最能近似表示表中數(shù)據(jù)間對(duì)應(yīng)關(guān)系的函數(shù)是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 與直線 相切.
(1)求圓 的方程;
(2)過點(diǎn) 的直線 截圓所得弦長(zhǎng)為 ,求直線 的方程;
(3)設(shè)圓 與 軸的負(fù)半軸的交點(diǎn)為 ,過點(diǎn) 作兩條斜率分別為 的直線交圓 于 兩點(diǎn),且 ,證明:直線 恒過一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com