精英家教網 > 高中數學 > 題目詳情
橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的焦點到直線x-3y=0的距離為
10
5
,離心率為
2
5
5
,拋物線G:y2=2px(p>0)的焦點與橢圓E的焦點重合;斜率為k的直線l過G的焦點與E交于A,B,與G交于C,D.
(1)求橢圓E及拋物線G的方程;
(2)是否存在學常數λ,使
1
|AB|
+
λ
|CD|
為常數,若存在,求λ的值,若不存在,說明理由.
(1)設E、G的公共焦點為F(c,0),由題意得
c
1+32
=
10
5
,
c
a
=
2
5
5

聯立解得c=2,a=
5
,b=1

所以橢圓E:
x2
5
+y2=1
,拋物線G:y2=8x.
(2)設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).
直線l的方程為y=k(x-2),與橢圓E的方程聯立
x2
5
+y2=1
y=k(x-2)
,得(1+5k2)x2-20k2x+20k2-5=0
△=400k4-20(5k2+1)(4k2-1)=20(k2+1)>0.
x1+x2=
20k2
1+5k2
,x1x2=
20k2-5
1+5k2

|AB|=
1+k2
|x1-x2|=
1+k2
(x1+x2)2-4x1x2
=
2
5
(k2+1)
1+5k2

直線l的方程為y=k(x-2),
與拋物線G的方程聯立
y2=8x
y=k(x-2)
,得k2x2-(4k2+8)x+4k2=0.
x3+x4=
4k2+8
k

|CD|=x3+x4+4=
8(k2+1)
k2

1
|AB|
+
λ
|CD|
=
1+5k2
2
5
(k2+1)
+
λk2
8
5
(k2+1)
=
(20+
5
λ)k2+4
8
5
(k2+1)

要使
1
|AB|
+
λ
|CD|
為常數,則20+
5
λ
=4,得λ=-
16
5
5

故存在λ=-
16
5
5
,使
1
|AB|
+
λ
|CD|
為常數.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,F1(-c,0),F2(c,0)
分別是左、右焦點,過F1的直線與圓(x+c)2+(y+2)2=1相切,且與橢圓E交于A、B兩點.
(1)當AB=
16
5
時,求橢圓E的方程;
(2)若直線AB的傾斜角為銳角,當c變化時,求證:AB的中點在一定直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鎮(zhèn)江二模)如圖,設A,B分別為橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點和上頂點,過原點O作直線交線段AB于點M(異于點A,B),交橢圓于C,D兩點(點C在第一象限內),△ABC和△ABD的面積分別為S1與S2
(1)若M是線段AB的中點,直線OM的方程為y=
1
3
x
,求橢圓的離心率;
(2)當點M在線段AB上運動時,求
S1
S2
的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•崇明縣一模)如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1,右焦點為F2,過F1的直線交橢圓于A,B兩點,△ABF2的周長為8,且△AF1F2面積最大時,△AF1F2為正三角形.
(1)求橢圓E的方程;
(2)設動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q.試探究:①以PQ為直徑的圓與x軸的位置關系?
②在坐標平面內是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•成都二模)巳知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
(a>b>0)以拋物線y2=8x的焦點為頂點,且離心率為
1
2

(I)求橢圓E的方程
(II)若F為橢圓E的左焦點,O為坐標原點,直線l:y=kx+m與橢圓E相交于A、B 兩點,與直線x=-4相交于Q點,P是橢圓E上一點且滿足
OP
=
OA
+
OB
,證明
OP
.
FQ
為定值并求出該值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,E的左頂點為A、上頂點為B,點P在橢圓上,且△PF1F2的周長為4+2
3

精英家教網
(I)求橢圓的方程;
(II)設C,D是橢圓E上兩不同點,CD∥AB,直線CD與x軸、y軸分別交于M,N兩點,且
MC
CN
,
MD
DN
,求λ+μ
的取值范圍.

查看答案和解析>>

同步練習冊答案