精英家教網(wǎng)若橢圓E1
x2
a
2
1
+
y2
b
2
1
=1
和橢圓E2
x2
a
2
2
+
y2
b
2
2
=1
滿足
a2
a1
=
b2
b1
=m
 (m>0)
,則稱(chēng)這兩個(gè)橢圓相似,m稱(chēng)為其相似比.
(1)求經(jīng)過(guò)點(diǎn)(2,
6
)
,且與橢圓
x2
4
+
y2
2
=1
相似的橢圓方程;
(2)設(shè)過(guò)原點(diǎn)的一條射線l分別與(1)中的兩個(gè)橢圓交于A、B兩點(diǎn)(其中點(diǎn)A在線段OB上),
|OA|+
1
|OB|
的最大值和最小值;
(3)對(duì)于真命題“過(guò)原點(diǎn)的一條射線分別與相似比為2的兩個(gè)橢圓C1
x2
22
+
y2
(
2
)
2
=1
和C2
x2
42
+
y2
(2
2
)
2
=1
交于A、B兩點(diǎn),P為線段AB上的一點(diǎn),若|OA|、|OP|、|OB|成等差數(shù)列,則點(diǎn)P的軌跡方程為
x2
32
+
y2
(
3
2
2
)
2
=1
”.請(qǐng)用推廣或類(lèi)比的方法提出類(lèi)似的一個(gè)真命題,并給予證明.
分析:(1)直接根據(jù)定義得到有
2
a
=
2
b
4
a2
+
6
b2
=1
解得
a2=16
b2=8
即可得到與橢圓
x2
4
+
y2
2
=1
相似的橢圓方程;
(2)先對(duì)射線與y軸重合時(shí)求出結(jié)論;再對(duì)射線不與坐標(biāo)軸重合時(shí),由橢圓的對(duì)稱(chēng)性,僅考查A、B在第一象限的情形,聯(lián)立直線與兩個(gè)橢圓方程分別求出線段的長(zhǎng)度,再結(jié)合函數(shù)的單調(diào)性即可求出|OA|+
1
|OB|
的最大值和最小值;(整理過(guò)程需小心避免出錯(cuò)).
(3)分析出命題的基本條件為:橢圓、a=2,b=
2
、m=2、等差,類(lèi)比著寫(xiě):①雙曲線或拋物線; ②a,b或p; ③相似比為m;④等比,再加以證明即可.
解答:精英家教網(wǎng)解:(1)設(shè)所求的橢圓方程為
x2
a2
+
y2
b2
=1
,則有
2
a
=
2
b
4
a2
+
6
b2
=1
解得
a2=16
b2=8

∴所要求的橢圓方程為
x2
16
+
y2
8
=1

(2)①當(dāng)射線與y軸重合時(shí),|OA|+
1
|OB|
=
2
+
1
2
2
=
5
2
4

②當(dāng)射線不與坐標(biāo)軸重合時(shí),由橢圓的對(duì)稱(chēng)性,我們僅考察A、B在第一象限的情形.
設(shè)其方程為y=kx(k≥0,x>0),設(shè)A(x1,y1),B(x2,y2
y=kx
x2
4
+
y2
2
=1
解得
x
2
1
=
4
1+2k2
y
2
1
=
4k2
1+2k2

|OA|=
2
k2+1
1+2k2

y=kx
x2
16
+
y2
8
=1
解得
x
2
1
=
16
1+2k2
y
2
1
=
16k2
1+2k2
,
|OB|=
4
k2+1
1+2k2

|OA|+
1
|OB|
=
2
k2+1
1+2k2
+
1+2k2
4
k2+1

t=
2
k2+1
1+2k2
則由t=
2
k2+1
1+2k2
=
4k2+4
1+2k2
=
2+
2
1+2k2
2
<t≤2

|OA|+
1
|OB|
=t+
1
2t

f(t)=t+
1
2t
,則f(t)在(
2
,2]
上是增函數(shù),∴f(
2
)<f(t)≤f(2)
,
5
4
2
<|OA|+
1
|OB|
9
4

由①②知,|OA|+
1
|OB|
的最大值為
9
4
,|OA|+
1
|OB|
的最小值為
5
2
4

(3)本題根據(jù)學(xué)生提出和解決問(wèn)題的質(zhì)量評(píng)分
命題結(jié)構(gòu):條件?結(jié)論
條件由四部分組成:
精英家教網(wǎng)
其中基本條件為:橢圓、a=2,b=
2
、m=2、等差,
得分條件為:①雙曲線或拋物線; ②a,b或p; ③相似比為m;④等比.
例1:①雙曲線+②a,b+③相似比為m+等差
過(guò)原點(diǎn)的一條射線分別與兩條雙曲線C1
x2
a2
-
y2
b2
=1
和C2
x2
(ma)2
-
y2
(mb)2
=1
(m>0)交于A、B兩點(diǎn),P為線段AB上的一點(diǎn),若|OA|、|OP|、|OB|成等差數(shù)列,則點(diǎn)P的軌跡方程為
x2
(
1+m
2
a)
2
-
y2
(
1+m
2
b)
2
=1

證明:∵射線l與雙曲線有交點(diǎn),不妨設(shè)其斜率為k,顯然|k|<
b
a

設(shè)射線l的方程為y=kx,設(shè)點(diǎn)A(x1,y1)、B(x2,y2)、p(x,y)
y=kx
x2
a2
-
y2
b2
=1
解得  x1=
ab
b2-a2k2
,
y=kx
x2
(ma)2
-
y2
(mb)2
=1
解得  x2=
mab
b2-a2k2

由P點(diǎn)在射線l上,且2|OP|=|OA|+|OB|得
x=
x1+x2
2
y=kx
x=
ab(1+m)
2
b2-a2k2
k=
y
x

x2
(
1+m
2
a)
2
-
y2
(
1+m
2
b)
2
=1

例2:①拋物線+②p+③相似比為m+等差
過(guò)原點(diǎn)的一條射線分別與兩條拋物線C1:y2=2px(p>0)和C2:y2=2mpx(m>0)相交于異于原點(diǎn)的A、B兩點(diǎn),P為線段AB上的一點(diǎn),若|OA|、|OP|、|OB|成等差數(shù)列,則點(diǎn)P的軌跡方程為y2=(1+m)px
證明:∵射線l與拋物線有異于原點(diǎn)的交點(diǎn),不妨設(shè)其斜率為k.
設(shè)射線l的方程為y=kx,設(shè)點(diǎn)A(x1,y1)、B(x2,y2)、p(x,y)
y=kx
y2=2px
解得  x1=
2p
k2

y=kx
y2=2mpx
解得  x2=
2mp
k2

由P點(diǎn)在射線l上,且2|OP|=|OA|+|OB|得
x=
x1+x2
2
y=kx
x=
2p(1+m)
k2
k=
y
x

得 y2=(1+m)px
點(diǎn)評(píng):本題綜合考查直線和橢圓的位置關(guān)系,難度較大,解題時(shí)要仔細(xì)審題,注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的長(zhǎng)軸長(zhǎng)為2
2
,離心率為e1=
2
2
,橢圓C2與C1有共同的短軸.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)若C2與直線l:x-y+2=0有兩個(gè)不同的交點(diǎn),求橢圓的離心率e2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓E1方程為
x2
a2
+
y2
b2
=1(a>b>0)
,圓E2方程為x2+y2=a2,過(guò)橢圓的左頂點(diǎn)A作斜率為k1直線l1與橢圓E1和圓E2分別相交于B、C. 
(Ⅰ)若k1=1時(shí),B恰好為線段AC的中點(diǎn),試求橢圓E1的離心率e;
(Ⅱ)若橢圓E1的離心率e=
1
2
,F(xiàn)2為橢圓的右焦點(diǎn),當(dāng)|BA|+|BF2|=2a時(shí),求k1的值;
(Ⅲ)設(shè)D為圓E2上不同于A的一點(diǎn),直線AD的斜率為k2,當(dāng)
k1
k2
=
b2
a2
時(shí),試問(wèn)直線BD是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E1
x2
10
+
2y2
5
=1
 E2
x2
a2
+
2y2
b2
=1(a>b>0)
.E1與E2有相同的離心率,過(guò)點(diǎn)F(-
3
,0
)的直線l與E1,E2依次交于A,C,D,B四點(diǎn)(如圖).當(dāng)直線l過(guò)E2的上頂點(diǎn)時(shí),直線l的傾斜角為
π
6

(1)求橢圓E2的方程;
(2)求證:|AC|=|DB|;
(3)若|AC|=1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy(O為坐標(biāo)原點(diǎn))中,橢圓E1
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)焦點(diǎn)在圓E2:x2+y2=a+b上,且橢圓的離心率是
3
2

(Ⅰ)求橢圓E1和圓E2的方程;
(Ⅱ)是否存在經(jīng)過(guò)圓E2上的一點(diǎn)P(x0,y0)的直線l,使l與圓E2相切,與橢圓E1有兩個(gè)不同的交點(diǎn)A、B,且
OA
OB
=3?若存在,求出點(diǎn)P的橫坐標(biāo)x0的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的長(zhǎng)軸長(zhǎng)為2
2
,離心率為e1=
2
2
,橢圓C2與C1有共同的短軸.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)若C2與直線l:x-y+2=0有兩個(gè)不同的交點(diǎn),求橢圓的離心率e2的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案