在極坐標(biāo)系中,圓ρ=2cosθ與直線3ρcosθ+4ρsinθ+a=0相切,求實(shí)數(shù)a的值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建坐標(biāo)系,已知曲線
,已知過(guò)點(diǎn)
的直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
分別交于
兩點(diǎn).
(Ⅰ)寫出曲線和直線
的普通方程;
(Ⅱ)若成等比數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
),若直線
過(guò)點(diǎn)P,且傾斜角為
,圓C以M為圓心,4為半徑。
(I)求直線的參數(shù)方程和圓C的極坐標(biāo)方程。
(II)試判定直線與圓C的位置關(guān)系。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
曲線的參數(shù)方程為
(
為參數(shù)),將曲線
上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的
倍,得到曲線
.
(Ⅰ)求曲線的普通方程;
(Ⅱ)已知點(diǎn),曲線
與
軸負(fù)半軸交于點(diǎn)
,
為曲線
上任意一點(diǎn), 求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知⊙O1和⊙O2的極坐標(biāo)方程分別是=2cos
和
="2a" sin
是非零常數(shù)).
(1)將兩圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若兩圓的圓心距為,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線C1的極坐標(biāo)方程為,曲線C2的極坐標(biāo)方程為
,曲線C1,C2相交于A,B兩點(diǎn)
(I)把曲線C1,C2的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(II)求弦AB的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系
取相同的長(zhǎng)度單位,且以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸)中,圓
的方程為
.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線
交于點(diǎn)
,若點(diǎn)
的坐標(biāo)為
,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與
軸的正半軸重合,且長(zhǎng)度單位相同.直線
的極坐標(biāo)方程為:
,點(diǎn)
,參數(shù)
.
(Ⅰ)求點(diǎn)軌跡的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)到直線
距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線的極坐標(biāo)方程為
,曲線C的參數(shù)方程為
,設(shè)
點(diǎn)是曲線C上的任意一點(diǎn),求
到直線
的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com