14.已知直線(xiàn)l:x+2y=0,圓C:x2+y2-6x-2y-15=0,求直線(xiàn)l被圓C所截得的線(xiàn)段的長(zhǎng).

分析 根據(jù)圓的方程找出圓心坐標(biāo)和半徑,過(guò)點(diǎn)A作AC⊥弦BD,可得C為BD的中點(diǎn),根據(jù)勾股定理求出BC,即可求出弦長(zhǎng)BD的長(zhǎng).

解答
解:過(guò)點(diǎn)A作AC⊥弦BD,垂足為C,連接AB,可得C為BD的中點(diǎn).
由x2+y2-6x-2y-15=0,得(x-3)2+(y-1)2=25.
知圓心A為(3,1),r=5.
由點(diǎn)A(3,1)到直線(xiàn)x+2y=0的距離AC=$\frac{5}{\sqrt{5}}$=$\sqrt{5}$.
在直角三角形ABC中,AB=5,AC=$\sqrt{5}$,
根據(jù)勾股定理可得BC=$\sqrt{25-5}$=2$\sqrt{5}$,
則弦長(zhǎng)BD=2BC=4$\sqrt{5}$.

點(diǎn)評(píng) 本題考查學(xué)生靈活運(yùn)用垂徑定理解決實(shí)際問(wèn)題的能力,靈活運(yùn)用點(diǎn)到直線(xiàn)的距離公式及勾股定理化簡(jiǎn)求值,會(huì)利用數(shù)形結(jié)合的數(shù)學(xué)思想解決數(shù)學(xué)問(wèn)題,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2x+a•2-x,其中常數(shù)a≠0.
(1)當(dāng)a=1時(shí),f(x)的最小值;
(2)當(dāng)a=256時(shí),是否存在實(shí)數(shù)k∈(1,2],使得不等式f(k-cosx)≥f(k2-cos2x)對(duì)任意x∈R恒成立?若存在,求出所有滿(mǎn)足條件的k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.己知平行四邊形的周長(zhǎng)為6,則其對(duì)角線(xiàn)長(zhǎng)的平方和的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在直角坐標(biāo)xOy中,${C_1}:\left\{{\begin{array}{l}{x=t}\\{y=t+5}\end{array}}\right.(t$為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)${C_2}:{ρ^2}+2{ρ^2}{sin^2}θ-3=0$.
(1)求C1的普通方程與C2的參數(shù)方程;
(2)根據(jù)(1)中你得到的方程,求曲線(xiàn)C2上任意一點(diǎn)P到C1的最短距離,并確定取得最短距離時(shí)P點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,過(guò)B1作B1E⊥BD1于點(diǎn)E,則A、E兩點(diǎn)之間的距離為$\frac{\sqrt{6}}{3}a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.“a=2”是“直線(xiàn)(a2-a)x+y=0和直線(xiàn)2x+y+1=0互相平行”的充分不必要條件,若曲線(xiàn)y2=xy+2x+k通過(guò)點(diǎn)(a,-a)(a∈R),則k的取值范圍是$[-\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x+1|,x∈[-2,0]}\\{2f(x-2),x∈(0,+∞)}\end{array}\right.$
(1)求函數(shù)f(x)在[-2,4]上的解析式;
(2)若方程f(x)=x+a在區(qū)間[-2,4]內(nèi)有3個(gè)等實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={1,2,3},B={2,3},則( 。
A.A=BB.B∈AC.A?BD.B?A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)命題p:函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度得到的曲線(xiàn)關(guān)于y軸對(duì)稱(chēng);命題q:函數(shù)y=|2x-1|在[-1,+∞)上是增函數(shù).則下列判斷錯(cuò)誤的是( 。
A.p為假B.¬q為真C.p∨q為真D.p∧q為假

查看答案和解析>>

同步練習(xí)冊(cè)答案