我們可以用以下方法來(lái)求方程x3+x-1=0的近似根:

設(shè)f(x)=x3+x-1,由f(0)=-1<0,f(1)=1>0,可知方程必有一根在區(qū)間(0,1)內(nèi);再由f(0.5)=-0.375<0,可知方程必有一根在區(qū)間(0.5,1)內(nèi);依此類(lèi)推,此方程必有一根所在的區(qū)間是

[  ]

A.(0.5,0.6)

B.(0.6,0.7)

C.(0.7,0.8)

D.(0.8,0.9)

答案:B
解析:

  分別將0.5,0.6,0.7,0.8,0.9的函數(shù)值求出列表如下:

  由上表可知方程x3+x-1=0必有一根在區(qū)間(0.6,0.7),故應(yīng)選B.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、我們可以用以下方法來(lái)求方程x3+x-1=0的近似根:設(shè)f(x)=x3+x-1,由f(0)=-1<0,f(1)=1>0,可知方程必有一根在區(qū)間(0,1)內(nèi);再由f(0.5)=-0.375<0,可知方程必有一根在區(qū)間(0.5,1)內(nèi);依此類(lèi)推,此方程必有一根所在的區(qū)間是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:海淀區(qū)一模 題型:單選題

我們可以用以下方法來(lái)求方程x3+x-1=0的近似根:設(shè)f(x)=x3+x-1,由f(0)=-1<0,f(1)=1>0,可知方程必有一根在區(qū)間(0,1)內(nèi);再由f(0.5)=-0.375<0,可知方程必有一根在區(qū)間(0.5,1)內(nèi);依此類(lèi)推,此方程必有一根所在的區(qū)間是(  )
A.(0.5,0.6)B.(0.6,0.7)C.(0.7,0.8)D.(0.8,0.9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京154中學(xué)高三(上)數(shù)學(xué)會(huì)考練習(xí)試卷(解析版) 題型:選擇題

我們可以用以下方法來(lái)求方程x3+x-1=0的近似根:設(shè)f(x)=x3+x-1,由f(0)=-1<0,f(1)=1>0,可知方程必有一根在區(qū)間(0,1)內(nèi);再由f(0.5)=-0.375<0,可知方程必有一根在區(qū)間(0.5,1)內(nèi);依此類(lèi)推,此方程必有一根所在的區(qū)間是( )
A.(0.5,0.6)
B.(0.6,0.7)
C.(0.7,0.8)
D.(0.8,0.9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年北京市海淀區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

我們可以用以下方法來(lái)求方程x3+x-1=0的近似根:設(shè)f(x)=x3+x-1,由f(0)=-1<0,f(1)=1>0,可知方程必有一根在區(qū)間(0,1)內(nèi);再由f(0.5)=-0.375<0,可知方程必有一根在區(qū)間(0.5,1)內(nèi);依此類(lèi)推,此方程必有一根所在的區(qū)間是( )
A.(0.5,0.6)
B.(0.6,0.7)
C.(0.7,0.8)
D.(0.8,0.9)

查看答案和解析>>

同步練習(xí)冊(cè)答案