14.某中學(xué)舉行升旗儀式,在坡度為15°的看臺(tái)E點(diǎn)和看臺(tái)的坡腳A點(diǎn),分別測(cè)得旗桿頂部的仰角分別為30°和60°,量的看臺(tái)坡腳A點(diǎn)到E點(diǎn)在水平線上的射影B點(diǎn)的距離為10cm,則旗桿的高CD的長(zhǎng)是$10({3-\sqrt{3}})$m.

分析 由題意作圖可得已知數(shù)據(jù),由正弦定理可得AD,進(jìn)而可得CD.

解答 解:如圖所示,依題意可知∠AED=45°,
∠EAD=180°-60°-15°=105°
∴∠EDA=180°-45°-105°=30°
由正弦定理可知AD=$\frac{AEsin45°}{sin30°}$=$\frac{10sin45°}{cos15°sin30°}$米
∴在Rt△ADC中,
CD=ACDsin∠DAC=$\frac{10sin45°}{cos15°sin30°}$×$\frac{\sqrt{3}}{2}$=$10({3-\sqrt{3}})$m,
故答案為$10({3-\sqrt{3}})$.

點(diǎn)評(píng) 本題主要考查了解三角形的實(shí)際應(yīng)用.此類問題的解決關(guān)鍵是建立數(shù)學(xué)模型,把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,利用所學(xué)知識(shí)解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在[-1,2]內(nèi),任取一個(gè)數(shù),使“-2<x<$\frac{1}{3}$”的概率是( 。
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{2}{3}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=6,則2$\overrightarrow a$-$\overrightarrow b$在$\overrightarrow a$方向上的投影為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,若將f(x)圖象上的所有點(diǎn)向右平移$\frac{π}{6}$個(gè)單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞增區(qū)間為( 。
A.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈ZB.[2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$],k∈Z
C.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈ZD.[2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,已知圓O是△ABC的外接圓,AB=BC,AD是 BC邊上的高,AE 是圓O的直徑,過點(diǎn)C作圓O的切線交BA的延長(zhǎng)線于點(diǎn)F.
(Ⅰ)求證:AC•BC=AD•AE;    
(Ⅱ)若AF=2,CF=2$\sqrt{2}$,求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U={a,b,c,d,e,f},集合A={a,b,e},B={b,d,f},則(∁UA)∪B為( 。
A.{a,e}B.{c}C.{d,f}D.{b,c,d,f}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=2$\sqrt{3}$cos(ωx+$\frac{π}{6}}$)的最小正周期是π,則f(${\frac{π}{3}}$)=-3或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=4,AA1=3,則四面體A1BC1D的體積為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)為奇函數(shù),當(dāng)x<0時(shí),f(x)=ex+x2,則曲線y=f(x)在x=1處的切線斜率為$\frac{1}{e}$-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案