要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時(shí)截得三種規(guī)格的小鋼板的塊數(shù)如下表所示:
今需要A、B、C三種規(guī)格的成品分別為15、18、27塊,問(wèn)各截這兩種鋼板多少?gòu)埧傻盟枞N規(guī)格成品,且使所用鋼板張數(shù)最少?
思路與技巧:建立線性規(guī)劃模型.
經(jīng)過(guò)可行域內(nèi)的整點(diǎn)(橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn))且與原點(diǎn)距離最近的直線是x+y=12,經(jīng)過(guò)的整點(diǎn)是B(3,9)和C(4,8),它們是最優(yōu)解. 答:要截得所需規(guī)格的三種鋼板,且使所截兩種鋼板的張數(shù)最少的方法有兩種,第一種截法是截第一種鋼板3張、第二種鋼板9張;第二種截法是截第一種鋼板4張、第二種鋼板8張,兩種方法都最少要截得兩種鋼板共12張. 評(píng)析:此例的解法是,先依條件列出不等式組,作出可行域,不考慮x、y為非負(fù)整數(shù)的條件,求出符合題中其他條件的最優(yōu)解,然后看此最優(yōu)解是否為非負(fù)整數(shù)解,若是非負(fù)整數(shù)解,則即為所求.若不是非負(fù)整數(shù)解,則應(yīng)求出經(jīng)過(guò)可行域內(nèi)的非負(fù)整數(shù)解且與原點(diǎn)距離最遠(yuǎn)(或最近)的點(diǎn)的直線,這個(gè)非負(fù)整數(shù)解就是最優(yōu)解. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
類(lèi) 型 | A規(guī)格 | B規(guī)格 | C規(guī)格 |
第一種鋼板 | 1 | 2 | 1 |
第二種鋼板 | 1 | 1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時(shí)截得三種規(guī)格的小鋼板塊數(shù)如下表:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
規(guī)格類(lèi)型 鋼板類(lèi)型 |
A |
B |
C |
第一種鋼板 | 2 | 1 | 1 |
第二種鋼板 | 1 | 2 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
規(guī)格類(lèi)型 | A規(guī)格 | B規(guī)格 | C規(guī)格 |
鋼板類(lèi)型 | |||
第一種鋼板 | 2 | 1 | 1 |
第二種鋼板 | 1 | 2 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆馬鞍山中加雙語(yǔ)學(xué)校高一第二學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時(shí)截得三種規(guī)格小鋼板的塊數(shù)如下表所示:
類(lèi) 型 |
A規(guī)格 |
B規(guī)格 |
C規(guī)格 |
第一種鋼板 |
1 |
2 |
1 |
第二種鋼板 |
1 |
1 |
3 |
每張鋼板的面積,第一種為,第二種為,今需要A、B、C三種規(guī)格的成品各12、15、27塊,問(wèn)各截這兩種鋼板多少?gòu)?可得所需三種規(guī)格成品,且使所用鋼板面積最?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com