已知橢圓的離心率為,左焦點為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與曲線交于不同的兩點,且線段的中點在圓 上,求的值.

 

【答案】

(Ⅰ);(Ⅱ).

【解析】

試題分析:(Ⅰ)利用離心率和直線與焦點坐標(biāo)得到兩個等量關(guān)系,確定橢圓方程;(Ⅱ)利用直線與圓聯(lián)立,借助韋達(dá)定理和中點坐標(biāo)M在圓上建立等量關(guān)系.

試題解析:(Ⅰ)由題意得                                2分

解得                                      4分

所以橢圓C的方程為:                               6分

(Ⅱ)設(shè)點的坐標(biāo)分別為,,線段的中點為,

,消去y得                 8分

,∴                           9分

,                           10分

∵點 在圓上,∴,即  13分

考點:1.橢圓方程;2.直線與圓的位置關(guān)系.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓E的離心率為e,兩焦點為F1,F(xiàn)2,拋物線C以F1為頂點,F(xiàn)2為焦點,P為兩曲線的一個公共點,若
|PF1|
|PF2|
=e,則e的值為( 。
A、
3
3
B、
3
2
C、
2
2
D、
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點為F,右頂點為A,動點M為右準(zhǔn)線上一點(異于右準(zhǔn)線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為
2
3
,點M的橫坐標(biāo)為
9
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1•k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的離心率為e,兩焦點為F1、F2,拋物線C以F1為頂點,F(xiàn)2為焦點,P為兩曲線的一個交點,若
|PF1|
|PF2|
=e,則e的值為
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的離心率為e=
6
3
,一條準(zhǔn)線方程為x=
3
2
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動點P滿足:
OP
=
OM
+
ON
,其中M,N是橢圓上的點,直線OM與ON的斜率之積為-
1
3
,問:是否存在兩個定點A,B,使得|PA|+|PB|為定值?若存在,求A,B的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(A題) (奧賽班做)已知橢圓E的離心率為e,左右焦點分別為F1、F2,拋物線C以F1頂點,F(xiàn)2為焦點,P為兩曲線的一個交點,
|PF1|
|PF2|
=e
,則e的值為
3
3
3
3

查看答案和解析>>

同步練習(xí)冊答案