(本小題滿分12分)一個(gè)四棱錐的直觀圖和三視圖如圖所示:

(1)求證:;
(2)求出這個(gè)幾何體的體積。
(3)若在PC上有一點(diǎn)E,滿足CE:EP=2:1,求證PA//平面BED。

(1)∵
, 在梯形中,, 
,又可得,,∴,
又∵,⊥面,
 
(2)4;(3)連結(jié)AC,設(shè)AC交BD于O點(diǎn), CD//AB,CD=2AB, 
 ,PA//EO,PA//平面BED 

解析試題分析:由三視圖可知:,底面ABCD為直角梯形,, ,,(1)∵,
, 在梯形中, 
,又可得,,
,
又∵,,
⊥面,
 
(2)PD平面ABCD,PD是這個(gè)四棱錐的高,又底面 ,所以 
(3)連結(jié)AC,設(shè)AC交BD于O點(diǎn), CD//AB ,CD=2AB, 
 ,PA//EO,EO平面BED ,PA平面BE
PA//平面BED 
考點(diǎn):本題考查了空間中的線面關(guān)系及體積的求法
點(diǎn)評:高考中?疾榭臻g中平行關(guān)系與垂直關(guān)系的證明以及幾何體體積的計(jì)算,這是高考的重點(diǎn)內(nèi)容.證明的關(guān)鍵是熟練掌握并靈活運(yùn)用相關(guān)的判定定理與性質(zhì)定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

正三棱臺中,分別是上、下底面的中心.已知,
 
(1)求正三棱臺的體積;
(2)求正三棱臺的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一個(gè)圓與正方形的周長都為1,證明:圓的面積比正方形的面積大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)如圖,在四棱錐中,底面為平行四邊形,中點(diǎn),,,中點(diǎn)。

(1)求證:。
(2)求證:。
(3)求直線與平面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,,過動(dòng)點(diǎn)A,垂足在線段上且異于點(diǎn),連接,沿將△折起,使(如圖2所示).

(1)當(dāng)的長為多少時(shí),三棱錐的體積最大;
(2)當(dāng)三棱錐的體積最大時(shí),設(shè)點(diǎn)分別為棱、的中點(diǎn),試在棱上確定一點(diǎn),使得,并求與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,設(shè)矩形ABCD(AB>AD)的周長為24,把它關(guān)于AC折起來,AB折過去后,交DC于點(diǎn)P. 設(shè)AB="x," 求△的最大面積及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,在直三棱柱中,.棱上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF =" a" (a為常數(shù)).

(Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;      
(Ⅱ)判斷三棱錐B—CEF的體積是否為定值.若是定值,求出這個(gè)三棱錐的體積;若不是定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
下列三個(gè)圖中,左邊是一個(gè)正方體截去一個(gè)角后所得多面體的直觀圖。右邊兩個(gè)是正視圖和側(cè)視圖.

(1)請?jiān)谡晥D的下方,按照畫三視圖的要求畫出該多面體的俯視圖(不要求敘述作圖過程);
(2)求該多面體的體積(尺寸如圖).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知棱長為的正方體中,M,N分別是棱CD,AD的中點(diǎn)。(1)求證:四邊形是梯形;(2)求證:

查看答案和解析>>

同步練習(xí)冊答案