已知a,b∈(0,+∞),a2+
b2
2
=1
,求a
1+b2
的最大值.
分析:利用基本不等式將a
1+b2
轉(zhuǎn)化為a
1+b2
1
2
2a2+1+b2
2
,從而可求得答案.
解答:解:∵a,b∈(0,+∞),a2+
b2
2
=1,即2a2+b2=2
a
1+b2
=
1
2
2
a•
1+b2
1
2
2a2+1+b2
2
=
3
2
4
…(10分)
當且僅當
2
a=
1+b2
即a=
3
2
,b=時等號成立…(12分)
點評:本題考查基本不等式,關鍵是將所求的式子轉(zhuǎn)化為已知的“和”為定值,也是難點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a<-b<0,化簡|b-
a2
|
得( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>b>0,則3a,3b,4a由小到大的順序是
3b<3a<4a
3b<3a<4a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a<b<0,則下列不等式中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b∈(0,+∞),a2+
b2
2
=1
,則a
1+b2
的最大值是
3
2
4
3
2
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b>0,a+b=1,則
a+1
+
b+1
的取值范圍是
 

查看答案和解析>>

同步練習冊答案