精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M為AB的中點.
(1)證明:CM⊥DE;
(2)在邊AC上找一點N,使CD∥平面BEN.
分析:(1)由已知中因為BC=AC,M為AB中點,我們易得CM⊥AB,又由等邊△ABC與直角梯形ABDE所在平面垂直,可得CM⊥平面ABDE,進而根據線面垂直的性質,即可證明CM⊥DE;
(2)連接AD交BE于點K,連接KN,由已知中直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M為AB的中點.我們易得KN∥CD,結合線面平行的判定定理,即可得到答案.
解答:解:(1)證明:因為BC=AC,M為AB中點.所以CM⊥AB,
又因為平面ABC⊥平面ABDE,平面ABC∩平面ABDE=AB,CM?平面ABC,
所以CM⊥平面ABDE,
又因DE?平面ABDE,所以CM⊥DE;(7分)
(2)當
AN
AC
=
1
3
時,CD∥平面BEN.
連接AD交BE于點K,連接KN,
因梯形ABDE中BD∥AE,BD=2AE,
所以
AK
KD
=
AE
BD
=
1
2
,則
AK
AD
=
1
3

又因
AN
AC
=
1
3
,所以KN∥CD(14分)
又KN?平面BEN,CD?平面BEN,所以CD∥平面BEN.
點評:本題考查的知識點是直線與平面垂直的性質及直線與平面平行的判定,線線垂直可由線面垂直的性質推得,直線和平面垂直,這條直線就垂直于平面內所有直線,這是尋找線線垂直的重要依據.垂直問題的證明,其一般規(guī)律是“由已知想性質,由求證想判定”,也就是說,根據已知條件去思考有關的性質定理;根據要求證的結論去思考有關的判定定理,往往需要將分析與綜合的思路結合起來.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點.
(1)證明:CO⊥DE;
(2)求二面角C-DE-A的正切值大小.
(3)求B到平面CDE的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點.
(1)證明:CO⊥DE;
(2)求二面角C-DE-A的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BDAE,BD=2AE,AE⊥AB,M為AB的中點.
(1)證明:CM⊥DE;
(2)在邊AC上找一點N,使CD平面BEN.
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點.

(Ⅰ)證明:CO⊥DE;

(Ⅱ)求二面角C—DE—A的大。

查看答案和解析>>

同步練習冊答案