圓錐曲線上任意兩點連成的線段稱為弦。若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦。已知點、是圓錐曲線C上不與頂點重合的任意兩點,是垂直于軸的一條垂軸弦,直線分別交軸于點和點。

(1)試用的代數(shù)式分別表示;

(2)若C的方程為(如圖),求證:是與和點位置無關的定值;

(3)請選定一條除橢圓外的圓錐曲線C,試探究經(jīng)過某種四則運算(加、減、乘、除),其結果是否是與和點位置無關的定值,寫出你的研究結論并證明。

 

【答案】

 

(1),

(2)證明略

(3)略

【解析】(1)因為是垂直于軸的一條垂軸弦,所以

                 則 ……………2分

         令……………. 4分

         同理可得:,……………. 6分

(2)由(1)可知:……………. 8分

   在橢圓C:上,,

  則(定值)

是與和點位置無關的定值       ……12分

(3)第一層次:

①點是圓C:上不與坐標軸重合的任意一點,是垂直于軸的垂軸弦,直線分別交軸于點和點,則!. 16分

證明如下:由(1)知:  

         在圓C:上,,

           則

是與和點位置無關的定值

②點是雙曲線C:上不與頂點重合的任意一點,是垂直于軸的垂軸弦,直線分別交軸于點和點,則。…………… 16分

證明如下:由(1)知:  

         在雙曲線C:上,,

           則

是與和點位置無關的定值

第二層次:

是拋物線C:上不與頂點重合的任意一點,是垂直于軸的垂軸弦,直線分別交軸于點和點,則!18分      

證明如下:由(1)知:

在拋物線C:上,

是與和點位置無關的定值

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)圓錐曲線上任意兩點連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知點P(x0,y0)、M(m,n)是圓錐曲線C上不與頂點重合的任意兩點,MN是垂直于x軸的一條垂軸弦,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0).
(1)試用x0,y0,m,n的代數(shù)式分別表示xE和xF;
(2)若C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),求證:xE•xF是與MN和點P位置無關的定值;
(3)請選定一條除橢圓外的圓錐曲線C,試探究xE和xF經(jīng)過某種四則運算(加、減、乘、除),其結果是否是與MN和點P位置無關的定值,寫出你的研究結論并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)圓錐曲線上任意兩點連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知橢圓C:
x2
4
+y2=1

(1)過橢圓C的右焦點作一條垂直于x軸的垂軸弦MN,求MN的長度;
(2)若點P是橢圓C上不與頂點重合的任意一點,MN是橢圓C的短軸,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎上,把上述橢圓C一般化為
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請你給出雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
中相類似的結論,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓錐曲線上任意兩點連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知點P(
x0,y0)、M(m,n)是圓錐曲線C上不與頂點重合的任意兩點,MN是垂直于x軸的一條垂軸弦,直線MP,NP分別交x軸于點E(xE,0)和點F(xF,0).
(Ⅰ)試用x0,y0,m,n的代數(shù)式分別表示xE和xF
(Ⅱ)已知“若點P(x0,y0)是圓C:x2+y2=R2上的任意一點(
x0•y0≠0),MN是垂直于x軸的垂軸弦,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0),則xExF=R2”.類比這一結論,我們猜想:“若曲線C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),則xE•xF也是與點M、N、P位置無關的定值”,請你對該猜想給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省鎮(zhèn)江市揚中二中高三(上)期末數(shù)學模擬試卷(解析版) 題型:解答題

圓錐曲線上任意兩點連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知點P(
x,y)、M(m,n)是圓錐曲線C上不與頂點重合的任意兩點,MN是垂直于x軸的一條垂軸弦,直線MP,NP分別交x軸于點E(xE,0)和點F(xF,0).
(Ⅰ)試用x,y,m,n的代數(shù)式分別表示xE和xF;
(Ⅱ)已知“若點P(x,y)是圓C:x2+y2=R2上的任意一點,MN是垂直于x軸的垂軸弦,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0),則”.類比這一結論,我們猜想:“若曲線C的方程為(如圖),則xE•xF也是與點M、N、P位置無關的定值”,請你對該猜想給出證明.

查看答案和解析>>

同步練習冊答案