18.某四棱錐的三視圖如圖所示,該四棱錐的表面積為( 。
A.$1+\sqrt{2}$B.3C.$2+\sqrt{2}$D.4

分析 由題意可知,其直觀圖為底面為俯視圖,有一側(cè)棱垂直于底面,高為1的四棱錐,從而求表面積即可.

解答 解:由題意可知,其直觀圖為底面為俯視圖,有一側(cè)棱垂直于底面,高為1的四棱錐,
其底面為正方形,S=1×1=1,高為2;
故其表面積S=1+$\frac{1}{2}$(1+1+$\sqrt{2}$+$\sqrt{2}$)=2+$\sqrt{2}$,
故選C.

點評 本題考查了學(xué)生的空間想象力,考查三視圖,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等差數(shù)列{an}中,a2=3,a3+a6=11
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=an+$\frac{1}{{2}^{{a}_{n}}}$,其中n∈N*,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A.10B.17C.24D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸的一個頂點與兩個焦點構(gòu)成正三角形,且該三角形的周長為6
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)F1,F(xiàn)2是橢圓C的左右焦點,若橢圓C的一個內(nèi)接平行四邊形ABCD的一組對邊過點F1和F2,求這個平行四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,x)且$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=0,則|3$\overrightarrow$|的值為( 。
A.$\sqrt{140}$B.$\frac{3}{2}\sqrt{85}$C.$\sqrt{120}$D.$\sqrt{110}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=$\sqrt{(\frac{1}{3})^{x}-2}$的定義域為( 。
A.(-∞,log32]B.(-∞,-log32]C.[log32,+∞)D.[-log32,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}滿足a3=7,a5+a7=26,其前n項和為Sn
(1)求{an}的通項公式及Sn;
(2)令${b_n}=\frac{1}{{{S_n}-n}}(n∈{N^*})$,求數(shù)列{bn}的前n項和Tn,并求$\lim_{n→∞}{T_n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面,則( 。
A.若m∥α,n∥α,則m∥nB.若m∥n,n⊥α,則m⊥αC.若m∥α,m∥β,則α∥βD.若m∥α,α⊥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義在R上的奇函數(shù)f(x)滿足f(x+1)=-$\frac{1}{f(x)}$.當(dāng)x∈[0,1]時,f(x)=2x-1,則f($log_{\frac{1}{2}}{18}$)的值是-$\frac{1}{8}$.

查看答案和解析>>

同步練習(xí)冊答案