精英家教網(wǎng) > 高中數(shù)學(xué) > 題目詳情
已知曲線f(x)=x(a+b•lnx)過點(diǎn)P(1,3),且在點(diǎn)P處的切線恰好與直線2x+3y=0垂直.
求(Ⅰ) 常數(shù)a,b的值;(Ⅱ)f(x)的單調(diào)區(qū)間.
分析:(Ⅰ)對函數(shù)f(x)=x(a+b•lnx)進(jìn)行求導(dǎo),根據(jù)P處切線斜率是3 2
,可得出即a+b=3 2
;然后根據(jù)曲線f(x)=x(a+b•lnx)過點(diǎn)P(1,3),求出a、b的值;
(Ⅱ)首先對函數(shù)f(x)進(jìn)行求導(dǎo),然后判斷導(dǎo)函數(shù)的正負(fù),即可求出f(x)的單調(diào)區(qū)間.解答:解�。á瘢⿹�(jù)題意f(1)=3,所以a=3(1)
f′(x)=(a+blnx)+x•b•1 x
=a+b+blnx,
又曲線在點(diǎn)P處的切線的斜率為3 2
,
∴f'(1)=3,即a+b=3 2
(2)
由(1)(2)解得a=3 ,b=-3 2
.
(Ⅱ)f′(x)=3 2
-3 2
lnx=3 2
(1-lnx).
∴當(dāng)x∈(0,e)時,f'(x)>0;當(dāng)x∈(e,+∞)時,f'(x)<0.
∴f(x)的單調(diào)區(qū)間為(0,e),(e,+∞),在區(qū)間(0,e)上是增函數(shù),在區(qū)間(e,+∞)上是減函數(shù).點(diǎn)評:考查學(xué)生會利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,會利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,此題難度不大.
練習(xí)冊系列答案
樂多英語專項(xiàng)突破系列答案
樂知源現(xiàn)代文閱讀系列答案
勵耘書業(yè)單元巧練系列答案
龍中龍初中英語語法專練系列答案
新課標(biāo)全能拓展新閱讀系列答案
初中語文閱讀卷系列答案
初中語文閱讀試題方法詳解系列答案
閱讀寫作e路通系列答案
初中語文閱讀與寫作系列答案
知識集錦名著導(dǎo)讀系列答案
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
(2012•深圳一模)已知函數(shù)f(x)=1 3
x3+bx2+cx+d,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=xf′(x)
, m>0,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知曲線f(x)=x-1
在點(diǎn)A(2,1)處的切線為直線l
(1)求切線l的方程;
(2)求切線l,x軸及曲線所圍成的封閉圖形的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=x3+ax2+bx+5,若曲線f(x)在點(diǎn)(1,f(1))處的切線斜率為3,且當(dāng)x=2 3
時,y=f(x)有極值.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-4,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知曲線f(x)=x3+bx2+cx在點(diǎn)A(-1,f(-1)),B(3,f(3))處的切線互相平行,且函數(shù)f(x)的一個極值點(diǎn)為x=0.
(Ⅰ)求實(shí)數(shù)b,c的值;
(Ⅱ)若函數(shù)y=f(x),x∈[-1 2
,3]的圖象與直線y=m恰有三個交點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:深圳一模
題型:解答題
已知函數(shù)f(x)=1 3
x3+bx2+cx+d,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=xf′(x)
, m>0,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號