變量x,y滿(mǎn)足條件
x+y≤8
2y-x≤4
x≥0,y≥0
且z=5y-x最大值為a,最小值為b,則a+b值為(  )
A、8B、-8C、16D、24
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移即可求z的最大值.
解答: 解:作出不等式對(duì)應(yīng)的平面區(qū)域(陰影部分),
由z=5y-x,得y=
1
5
x+
z
5

平移直線y=
1
5
x+
z
5
,由圖象可知當(dāng)直線y=
1
5
x+
z
5
經(jīng)過(guò)點(diǎn)B時(shí),直線y=-2x+z的截距最大,此時(shí)z最大.
當(dāng)直線y=
1
5
x+
z
5
經(jīng)過(guò)點(diǎn)C(8,0)時(shí),直線y=-2x+z的截距最小,此時(shí)z最小.
最小值為b=z=-8.
x+y=8
2y-x=4
,解得
x=4
y=4
,
即B(4,4).
此時(shí)z的最大值為a=z=5×4-4=20-4=16,
∴a+b=16-8=8.
故選:A.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在人群流量較大的街道,有一中年人吆喝“送錢(qián)”,只見(jiàn)他手拿一黑色小布袋,袋中有3只標(biāo)記為A、B、C的黃球,3只標(biāo)記為1、2、3的白球(顏色不同而質(zhì)地完全相同的乒乓球).旁邊立著一塊小黑板寫(xiě)道:
摸球方法:從袋中隨機(jī)摸出3個(gè)球,若摸得同一顏色的3個(gè)球,攤主送給摸球者5元錢(qián);若摸得非同一顏色的3個(gè)球,摸球者付給攤主1元錢(qián).
(1)寫(xiě)出從6個(gè)球中隨機(jī)摸出3個(gè)的所有基本事件,并計(jì)算的摸出的3個(gè)球?yàn)榘浊虻母怕适嵌嗌伲?br />(2)假定一天中有100人次摸球,試從概率的角度估算一下這個(gè)攤主一個(gè)月(按30天計(jì))能賺多少錢(qián)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
m
x
+2
(m為實(shí)常數(shù)).
(1)若函數(shù)y=f(x)圖象上動(dòng)點(diǎn)P到定點(diǎn)Q(0,2)的距離的最小值為
2
,求實(shí)數(shù)m的值;
(2)若函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù),試用函數(shù)單調(diào)性的定義求實(shí)數(shù)m的取值范圍;
(3)設(shè)m<0,若不等式f(x)≤kx在x∈[
1
2
 , 1]
有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
x
x-1
<0
的解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線
2
x-y+m=0與圓x2+y2-2y-2=0相切,則實(shí)數(shù)m等于( 。
A、-3
3
3
B、-3
3
或3
3
C、4或-2
D、-4或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知點(diǎn)A(1,3),B(3,1),C(-1,0);
(1)求直線AB的方程
(2)求以點(diǎn)C為圓心,且與直線AB相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)E(2,1)和圓O:x2+y2=16.
(Ⅰ)過(guò)點(diǎn)E的直線l被圓O所截得的弦長(zhǎng)為4
3
,求直線l的方程;
(Ⅱ)試探究是否存在這樣的點(diǎn)M:M是圓O內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱(chēng)為整點(diǎn)),且△OEM的面積S△OEM=2?若存在,求出點(diǎn)M的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2-10x+21=0,若直線y=kx-3上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)在四次語(yǔ)文單元測(cè)試中,其成績(jī)的莖葉圖如圖所示,則該同學(xué)語(yǔ)文成績(jī)的方差
 

查看答案和解析>>

同步練習(xí)冊(cè)答案