(1)已知A+B=,求證:(1+tanA)(1+tanB)=2;

(2)化簡:(1+)(1+)…(1+)(1+).

答案:
解析:

 解 (1)∵A+B=,∴tan(A+B)==1,∴(1+tanA)(1+tanB)=2.

  (2)利用(1),(1+)(1+)=2,(1+)(1+)=2,…,(1+)(1+)=2,又1+=2,∴原式=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量a=(x+1,y),b=(x-1,y),點(diǎn)P(x,y)為動(dòng)點(diǎn),已知|a|+|b|=4.

(Ⅰ)求點(diǎn)P的軌跡方程;

(Ⅱ)設(shè)點(diǎn)P的軌跡與x軸負(fù)半軸交于點(diǎn)A,過點(diǎn)F(1,0)的直線交點(diǎn)P的軌跡于B、C兩點(diǎn),試推斷△ABC的面積是否存在最大值?若存在,求其最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量a=(x+1,y),b=(x-1,y),點(diǎn)P(x,y)為動(dòng)點(diǎn),已知|a|+|b|=4.

(Ⅰ)求點(diǎn)P的軌跡方程;

(Ⅱ)設(shè)點(diǎn)P的軌跡與x軸負(fù)半軸交于點(diǎn)A,過點(diǎn)F(1,0)的直線交點(diǎn)P的軌跡于B、C兩點(diǎn),試推斷△ABC的面積是否存在最大值?若存在,求其最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)平面向量專項(xiàng)訓(xùn)練(河北) 題型:解答題

在△ABC中,角A,B,C的對邊分別為a,b,c,已知a+b=5,c=,且cos 2C+2cos(A+B)=-.
(1)求角C的大;
(2)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省五市高三第二次聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分10分)選修4-5《不等式選講》.

已知a+b=1,對a,b∈(0,+∞),使≥|2x-1|-|x+1|恒成立,求x的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案