【題目】如圖,在平面直角坐標系中,已知兩點分別為橢圓的右頂點和上頂點,且,右準線的方程為.

1)求橢圓的標準方程;

2)過點的直線交橢圓于另一點,交于點.若以為直徑的圓經(jīng)過原點,求直線的方程.

【答案】(1);(2).

【解析】

(1)由右準線的方程為以及可列出方程組解得即可求出橢圓的方程.

(2) 的方程為,與橢圓方程聯(lián)立,求出;聯(lián)立可得,可知,從而可求出,進而可求直線的方程.

解:(1)設橢圓的焦距為.由題意得,解得.

所以橢圓的標準方程為:.

(2)由題意得直線不垂直于軸,設的方程為

聯(lián)立,.

又直線過點,則方程必有一根為2,則.

代入直線,得點.聯(lián)立,所以.

又以為直徑的圓過原點,所以.

,解得,所以.

所以直線的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為常數(shù),函數(shù)

1)過坐標原點作曲線的切線,設切點為,求;

2)令,若函數(shù)在區(qū)間上是單調減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某音樂院校舉行“校園之星”評選活動,評委由本校全體學生組成,對兩位選手,隨機調查了20個學生的評分,得到下面的莖葉圖:

所得分數(shù)

低于60分

60分到79分

不低于80分

分流方向

淘汰出局

復賽待選

直接晉級

(1)通過莖葉圖比較兩位選手所得分數(shù)的平均值及分散程度(不要求計算出具體值,得出結論即可);

(2)舉辦方將會根據(jù)評分結果對選手進行三向分流,根據(jù)所得分數(shù),估計兩位選手中哪位選手直接晉級的概率更大,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家A1,A2A33個歐洲國家B1,B2,B3中選擇2個國家去旅游.

(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修44:坐標系與參數(shù)方程

在以直角坐標原點為極點,的非負半軸為極軸的極坐標系下,曲線的方程是,將向上平移1個單位得到曲線

)求曲線的極坐標方程;

)若曲線的切線交曲線于不同兩點,切點為.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的首項為1,各項均為正數(shù),其前項和為,,.

1)求,的值;

2)求證:數(shù)列為等差數(shù)列;

3)設數(shù)列滿足,,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】受電視機在保修期內維修費等因素的影響,企業(yè)生產(chǎn)每臺電視機的利潤與該電視機首次出現(xiàn)故障的時間有關.某電視機制造廠生產(chǎn)甲、乙兩種型號電視機,保修期均為2年,現(xiàn)從該廠已售出的兩種型號電視機中各隨機抽取50臺,統(tǒng)計數(shù)據(jù)如下:

品牌

首次出現(xiàn)故障時間x(年)

電視機數(shù)量(臺)

3

5

42

8

42

每臺利潤(千元)

1

2

3

1.8

2.8

將頻率視為概率,解答下列問題:

1)從該廠生產(chǎn)的甲種型號電視機中隨機抽取一臺,求首次出現(xiàn)故障發(fā)生在保修期內的概率;

2)該廠預計今后這兩種型號電視機銷量相當,由于資金限制,只能生產(chǎn)其中一種型號電視機,若從經(jīng)濟效益的角度考慮,你認為應該產(chǎn)生哪種型號電視機?說明理由.

查看答案和解析>>

同步練習冊答案