設(shè)f(x),g(x)[a,b]上可導(dǎo),f(x)>g(x),則當(dāng)a<x<b,(  )

(A)f(x)>g(x)

(B)f(x)<g(x)

(C)f(x)+g(a)>g(x)+f(a)

(D)f(x)+g(b)>g(x)+f(b)

 

C

【解析】f'(x)>g'(x),[f(x)-g(x)]'>0,

f(x)-g(x)[a,b]上是增函數(shù).

f(a)-g(a)<f(x)-g(x),

f(x)+g(a)>g(x)+f(a).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)四十 第六章第六節(jié)練習(xí)卷(解析版) 題型:選擇題

在證明命題“對于任意角θ,cos4θ-sin4θ=cos2θ”的過程:cos4θ-sin4θ=(cos2θ+sin2θ)·(cos2θ-sin2θ)=cos2θ-sin2θ=cos2θ”中應(yīng)用了(  )

(A)分析法

(B)綜合法

(C)分析法和綜合法綜合使用

(D)間接證法

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十六第二章第十三節(jié)練習(xí)卷(解析版) 題型:選擇題

(ex+2x)dx等于(  )

(A)1 (B)e-1 (C)e (D)e+1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十五第二章第十二節(jié)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3-x2+ax-a(aR).

(1)當(dāng)a=-3,求函數(shù)f(x)的極值.

(2)若函數(shù)f(x)的圖象與x軸有且只有一個交點(diǎn),a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十五第二章第十二節(jié)練習(xí)卷(解析版) 題型:選擇題

函數(shù)y=xlnx在區(qū)間(0,1)上是(  )

(A)單調(diào)增函數(shù)

(B)(0,)上是減函數(shù),(,1)上是增函數(shù)

(C)單調(diào)減函數(shù)

(D)(0,)上是增函數(shù),(,1)上是減函數(shù)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十二第二章第九節(jié)練習(xí)卷(解析版) 題型:解答題

已知某物體的溫度θ(單位:攝氏度)隨時間t(單位:分鐘)的變化規(guī)律是:θ=m·2t+21-t(t0,m>0).

(1)如果m=2,求經(jīng)過多少時間,物體的溫度為5攝氏度.

(2)若物體的溫度總不低于2攝氏度,m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十二第二章第九節(jié)練習(xí)卷(解析版) 題型:選擇題

某電信公司推出兩種手機(jī)收費(fèi)方式:A種方式是月租20,B種方式是月租0.一個月的本地網(wǎng)內(nèi)打出電話時間t(分鐘)與打出電話費(fèi)s()的函數(shù)關(guān)系如圖,當(dāng)打出電話150分鐘時,這兩種方式電話費(fèi)相差(  )

(A)10(B)20(C)30(D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十九第三章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

函數(shù)y=cos(2x+)的圖象的一條對稱軸方程是(  )

(A)x=- (B)x=-

(C)x= (D)x=π

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十一第二章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

已知符號函數(shù)sgn(x)=則函數(shù)f(x)=sgn(lnx)-lnx的零點(diǎn)個數(shù)為(  )

(A)1 (B)2 (C)3 (D)4

 

查看答案和解析>>

同步練習(xí)冊答案