【題目】己知點,分別是橢圓的上頂點和左焦點,若與圓相切于點,且點是線段靠近點的三等分點.

求橢圓的標準方程;

直線與橢圓只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于,兩點,求面積的取值范圍.

【答案】;.

【解析】

連接,由三角形相似得,,進而得出,,寫出橢圓的標準方程;

得,,因為直線與橢圓相切于點,,解得,因為點在第二象限,所以,,所以,設(shè)直線垂直交于點,則是點到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.

解:連接,由可得,

,,

橢圓的標準方程;

得,

因為直線與橢圓相切于點,

所以,即,

解得,,

即點的坐標為

因為點在第二象限,所以,

所以,

所以點的坐標為

設(shè)直線垂直交于點,則是點到直線的距離,

設(shè)直線的方程為,

,

當且僅當,即時,有最大值

所以,即面積的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以該直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)分別求曲線的極坐標方程和曲線的直角坐標方程;

(Ⅱ)設(shè)直線交曲線兩點,交曲線,兩點,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線圍成的各區(qū)域上分別且只能標記數(shù)字1,2,3,4,相鄰區(qū)域標記的數(shù)字不同,其中,區(qū)域和區(qū)域標記的數(shù)字丟失.若在圖上隨機取一點,則該點恰好取自標記為1的區(qū)域的概率所有可能值中,最大的是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.

(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;

(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個極值點x1,x2,且滿足1e(e為自然對數(shù)的底數(shù))求x1x2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的一個焦點為,點C.

1)求橢圓C的方程;

2)過點且斜率不為0的直線l與橢圓C相交于MN兩點,橢圓長軸的兩個端點分別為,,相交于點Q,求證:點Q在某條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.

(1)求的普通方程和的直角坐標方程;

(2)若過點的直線交于,兩點,與交于,兩點,求的取值范圍.

查看答案和解析>>

同步練習冊答案