【題目】若函數(shù)y=f(x)的圖象上每一點的縱坐標(biāo)保持不變,橫坐標(biāo)伸長到原來的2倍,再將整個圖象沿x軸向右平移 個單位,沿y軸向下平移1個單位,得到函數(shù)y= sinx的圖象,則y=f(x)的解析式為(
A.y= sin(2x+ )+1
B.y= sin(2x﹣ )+1
C.y= sin( x+ )+1
D.y= sin( x﹣ )+1

【答案】A
【解析】解:由題意可得,把函數(shù)y= sinx的圖象沿y軸向上平移1個單位, 可得函數(shù)y= sinx+1的圖象;
再將整個圖象沿x軸向左平移 個單位,可得函數(shù)y= sin(x+ )+1的圖象;
再把橫坐標(biāo)變?yōu)樵瓉淼? 倍,可得函數(shù)y= sin(2x+ )+1=f(x)的圖象,
故選:A.
【考點精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對題目進行判斷即可得到答案,需要熟知圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA=(2c+a)cos(π﹣B)
(1)求角B的大;
(2)若b=4,△ABC的面積為 ,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*(Ⅰ)證明:數(shù)列{an﹣n}是等比數(shù)列
(Ⅱ)記數(shù)列{an}的前n項和為Sn , 求證:Sn+1≤4Sn , 對任意n∈N*成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足asinA﹣csinC=(a﹣b)sinB.
(1)求角C的大;
(2)若邊長 ,求△ABC的周長最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個勻速旋轉(zhuǎn)的摩天輪每12分鐘轉(zhuǎn)一周,最低點距地面2米,最高點距地面18米,P是摩天輪輪周上一定點,從P在最低點時開始計時,則16分鐘后P點距地面的高度是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的對稱中心和函數(shù)的單調(diào)遞增區(qū)間;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c,若 ,求AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有一道這樣的題目:把100個面包分給5個人,使每個人所得成等差數(shù)列,且使較大的三份之和的 是較小的兩份之和,問最小一份為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠C= ,AC=BC,M、N分別是BC、AB的中點,將△BMN沿直線MN折起,使二面角B′﹣MN﹣B的大小為 ,則B'N與平面ABC所成角的正切值是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C所對的邊分別為a,b,c,S表示三角形的面積,若asinA+bsinB=csinC,且S= ,則對△ABC的形狀的精確描述是(
A.直角三角形
B.等腰三角形
C.等腰或直角三角形
D.等腰直角三角形

查看答案和解析>>

同步練習(xí)冊答案