【題目】已知f(x)=ax2﹣2(a+1)x+3(a∈R).
(1)若函數(shù)f(x)在 單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)令h(x)= ,若存在 ,使得|h(x1)﹣h(x2)|≥ 成立,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:①當(dāng)a=0時(shí),f(x)=﹣2x+3,顯然滿足;

,③ ,

綜上:


(2)解:存在 ,使得|h(x1)﹣h(x2)|≥ 成立即:

上,h(x)max﹣h(x)min 成立,

因?yàn)? ,令 ,

(i)當(dāng)a≤0時(shí),g(t)在 單調(diào)遞減,所以 ,

等價(jià)于 ,所以a≤0.

(ii)當(dāng)0<a<1時(shí), ,g(t)在 上單調(diào)遞減,

上單調(diào)遞增.

①當(dāng) 時(shí),即 ,g(t)在 單調(diào)遞增.

得到 ,所以

②當(dāng) 時(shí), 時(shí),g(t)在 單調(diào)遞減,

得到 ,所以

③當(dāng) ,即 時(shí),

最大值則在g(2)與 中取較大者,作差比較 ,得到分類討論標(biāo)準(zhǔn):

a.當(dāng) 時(shí), ,此時(shí) ,

,

得到

所以

b.當(dāng) 時(shí), ,此時(shí)g(t)max=g(2),

,得到 ,

所以此時(shí)a∈,

在此類討論中,

c.當(dāng)a≥1時(shí),g(t)在 單調(diào)遞增,由 ,

得到 ,所以a≥1,

綜合以上三大類情況,


【解析】(1)對(duì)a討論,a=0,a>0,a<0,結(jié)合二次函數(shù)的圖象和單調(diào)性的性質(zhì),得到不等式組,解不等式即可得到a的范圍;(2)由題意可得在 上,h(x)max﹣h(x)min 成立,因?yàn)? ,令 ,則 , .對(duì)a討論,(i)當(dāng)a≤0時(shí),(ii)當(dāng)0<a<1時(shí),求出單調(diào)性和最值,即可得到a的范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的最值及其幾何意義的相關(guān)知識(shí),掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担约皩(duì)二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b2+c2﹣a2=bc.
(1)求角A的大;
(2)若a= ,且△ABC的面積為 ,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣6x﹣4y+4=0,點(diǎn)P(6,0).
(1)求過點(diǎn)P且與圓C相切的直線方程l;
(2)若圓M與圓C外切,且與x軸切于點(diǎn)P,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知0<α<π,sin(π﹣α)+cos(π+α)=m.
(1)當(dāng)m=1時(shí),求α;
(2)當(dāng) 時(shí),求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為 . (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為 ,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F1 , F2分別是橢圓E:x2+ =1(0<b<1)的左、右焦點(diǎn),過F1的直線l與E相交于A、B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列. (Ⅰ)求|AB|;
(Ⅱ)若直線l的斜率為1,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2ωx+2 cosωxsinωx+sin(ωx+ )sin(ωx﹣ )(ω>0),且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間(0,π)上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+cosα﹣2x+cosα , x∈R,且
(1)若0≤α≤π,求α的值;
(2)當(dāng)m<1時(shí),證明:f(m|cosθ|)+f(1﹣m)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 的定義域是(
A.[1,+∞)
B.(1,+∞)
C.(0,1]
D.( ,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案