橢圓
x2
9
+
y2
4
=1
的內(nèi)接矩形面積的最大值是
12
12
分析:設(shè)出橢圓的內(nèi)接矩形的一個(gè)頂點(diǎn)坐標(biāo),表示出面積的表達(dá)式,然后求出最大值.
解答:解:設(shè)橢圓上矩形在第一選項(xiàng)內(nèi)的點(diǎn)的坐標(biāo)為(3cosθ,2sinθ),θ∈(0,
π
2

所以橢圓
x2
9
+
y2
4
=1
的內(nèi)接矩形面積S=4×3cosθ•2sinθ=12sin2θ≤12.
故答案為:12.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查幾何圖形的面積的最值的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2為橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),P為橢圓上的一點(diǎn),已知P,F(xiàn)1,F(xiàn)2是一個(gè)直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,求
|PF1|
|PF2|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2是橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且丨PF1丨:丨PF2丨=2:1,則△PF1F2的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
9
+
y2
4
=1
內(nèi)有一點(diǎn)P(2,1),過(guò)點(diǎn)P作直線交橢圓于A、B兩點(diǎn).
(1)若弦AB恰好被點(diǎn)P平分,求直線AB的方程;
(2)當(dāng)原點(diǎn)O到直線AB的距離取最大值時(shí),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P(x,y)為橢圓
x2
9
+
y2
4
=1
上的動(dòng)點(diǎn),A(a,0)(0<a<3)為定點(diǎn),已知|AP|的最小值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2是橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),若△PF1F2是直角三角形,且|PF1|>|PF2|,則
|PF1|
|PF2|
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案