已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合.直線的參數(shù)方程為 (為參數(shù)),圓的極坐標(biāo)方程為.若直線與圓相交于、
,求實(shí)數(shù)的值.
本試題主要是考查了直線與圓的位置關(guān)系的運(yùn)用,以及極坐標(biāo)與直角坐標(biāo)的互換的綜合運(yùn)用。
直線的普通方程為:
的直角坐標(biāo)方程為: 
設(shè)圓心到直線的距離為,則由題意得:
,則
解:直線的普通方程為:......4分
的直角坐標(biāo)方程為: ......8分
設(shè)圓心到直線的距離為,則由題意得:
,則 ......13分
另法:曲線C的直角坐標(biāo)方程為:.........4分
代入曲線C的方程,......8分
設(shè)點(diǎn)分別對(duì)應(yīng)參數(shù),則由韋達(dá)定理知
由于,所以
 ......13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)過點(diǎn)P(0,0),Q(4,2),R(-1,-3)三點(diǎn)的圓的標(biāo)準(zhǔn)方程式什么?
(2)已知?jiǎng)狱c(diǎn)M到點(diǎn)A(2,0)的距離是它到點(diǎn)B(-1,0)的距離的倍,求:(1)動(dòng)點(diǎn)M的軌跡方程;(2)根據(jù)取值范圍指出軌跡表示的圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓與拋物線的準(zhǔn)線相切,則的值為()
A.1B.2C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知橢圓上的動(dòng)點(diǎn)到焦點(diǎn)距離的最小值為。以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),為橢圓上一點(diǎn), 且滿足
為坐標(biāo)原點(diǎn))。當(dāng) 時(shí),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線與圓沒有交點(diǎn),則的取值范圍
             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

經(jīng)過點(diǎn)作圓的切線,則切線的方程為        (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.圓關(guān)于直線對(duì)稱的圓的方程為          ; 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線,若圓上恰好存在兩個(gè)點(diǎn)P、Q,他們到直線的距離為1,則稱該圓為“完美型”圓。則下列圓中是“完美型”圓的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓C:x2+y2+4x-12y+24=0.若直線l過點(diǎn)P(0,5)且被圓C截得的線段長(zhǎng)為4,則l的方程為(  )
A.3x-4y+20=0
B.4x-3y+15=0
C.3x-4y+20=0或x=0
D.3x-4y+20="0" 或 4x-3y+15=0

查看答案和解析>>

同步練習(xí)冊(cè)答案