A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,根據(jù)概率的幾何概型的概率公式進(jìn)行計(jì)算即可得到結(jié)論.
解答 解:作出不等式組$\left\{\begin{array}{l}{x+y-4≤0}\\{x>0}\\{y>0}\end{array}\right.$對(duì)應(yīng)的平面區(qū)域如圖:
對(duì)應(yīng)的圖形為△OAB,其中對(duì)應(yīng)面積為S=$\frac{1}{2}$×4×4=8,
若f(x)=ax2-4bx+1在區(qū)間[1,+∞)上是增函數(shù),
則滿足a>0且對(duì)稱軸x=-$\frac{-4b}{2a}$≤1,
即 $\left\{\begin{array}{l}{a>0}\\{a≥2b}\end{array}\right.$,對(duì)應(yīng)的平面區(qū)域?yàn)椤鱋BC,
由 $\left\{\begin{array}{l}{a=2b}\\{a+b-4=0}\end{array}\right.$,
解得 $\left\{\begin{array}{l}{a=\frac{8}{3}}\\{b=\frac{4}{3}}\end{array}\right.$,
∴對(duì)應(yīng)的面積為S1=$\frac{1}{2}$×$\frac{4}{3}$×4=$\frac{8}{3}$,
∴根據(jù)幾何概型的概率公式可知所求的概率為$\frac{\frac{8}{3}}{8}$=$\frac{1}{3}$,
故選:B.
點(diǎn)評(píng) 本題主要考查幾何概型的概率公式的計(jì)算,作出不等式組對(duì)應(yīng)的平面區(qū)域是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1+4kπ,1+4kπ),k∈Z | B. | (-3+8kπ,1+8kπ),k∈Z | ||
C. | (-1+4k,1+4k),k∈Z | D. | (-3+8k,1+8k),k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 9 | C. | 18 | D. | 27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$+$\frac{3}{2}$i | B. | $\frac{1}{2}$+$\frac{3}{2}$i | C. | -$\frac{1}{2}$-$\frac{3}{2}$i | D. | $\frac{1}{2}$-$\frac{3}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 25 | C. | 47 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com