精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=22x-
5
2
2x+1-6
,其中x∈[0,3],求f(x)的最大值和最小值.
(1)∵f(x)=(2x2-5•2x-6(0≤x≤3),
令t=2x,
∵0≤x≤3,
∴1≤t≤8
所以有:h(t)=t2-5t-6=(t-
5
2
)2-
49
4
(1≤t≤8)
所以:當t∈[1,
5
2
]
時,h(t)是減函數;當t∈(
5
2
,8]
時,h(t)是增函數;
f(x)min=h(
5
2
)=-
49
4
,f(x)max=h(8)=18.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
2-xx+1

(1)求出函數f(x)的對稱中心;
(2)證明:函數f(x)在(-1,+∞)上為減函數;
(3)是否存在負數x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數f(x)的值域和最小正周期;
(2)當x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數x均成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當x=
3
3
時,函數f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習冊答案