精英家教網(wǎng)如圖,從雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左焦點(diǎn)F引圓x2+y2=a2的切線,切點(diǎn)為T,延長FT交雙曲線右支于P點(diǎn),若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|與b-a的大小關(guān)系為( 。
A、|MO|-|MT|>b-a
B、|MO|-|MT|<b-a
C、|MO|-|MT|=b-a
D、以上三種可能都有
分析:將點(diǎn)P置于第一象限.設(shè)F1是雙曲線的右焦點(diǎn),連接PF1.由M、O分別為FP、FF1的中點(diǎn),知|MO|=
1
2
|PF1|.由雙曲線定義,知|PF|-|PF1|=2a,|FT|=
|OF|2-|OT|2
=b.由此知|MO|-|MT|=
1
2
(|PF1|-|PF|)+|FT|=b-a.
解答:精英家教網(wǎng)解:將點(diǎn)P置于第一象限.
設(shè)F1是雙曲線的右焦點(diǎn),連接PF1
∵M(jìn)、O分別為FP、FF1的中點(diǎn),∴|MO|=
1
2
|PF1|.
又由雙曲線定義得,
|PF|-|PF1|=2a,
|FT|=
|OF|2-|OT|2
=b.
故|MO|-|MT|
=
1
2
|PF1|
-|MF|+|FT|
=
1
2
(|PF1|-|PF|)+|FT|
=b-a.
故選C.
點(diǎn)評:本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與雙曲線的相關(guān)知識,解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,從雙曲線
x2
9
-
y2
25
=1
的左焦點(diǎn)F1引圓x2+y2=9的切線,切點(diǎn)為T,延長F1T交雙曲線右支于P點(diǎn).設(shè)M為線段F1P的中點(diǎn),O為坐標(biāo)原點(diǎn),則|F1t|=
 
;|MO|-|MT|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,從橢圓
x2
a2
+
y2
b2
=1(a>b>o)上一點(diǎn)P向x軸作垂線,垂足恰好為左焦點(diǎn)F1,又點(diǎn)A是橢圓與x軸正半軸的交點(diǎn),點(diǎn)B是橢圓與y軸正半軸的交點(diǎn),且AB∥OP,則橢圓的離心率e=
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:從橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點(diǎn)M向x軸作垂線,恰好通過橢圓的左焦點(diǎn)F1(-c,0),且
.
AB
.
OM
,則a,b,c必滿足
b=c=
2
2
a
b=c=
2
2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,從雙曲線的左焦點(diǎn)F引圓的切線,切點(diǎn)為T,延長FT交雙曲線右支于P點(diǎn),若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則的大小關(guān)系為(    )

       A.

       B.

       C.

       D.大小關(guān)系不確定

查看答案和解析>>

同步練習(xí)冊答案