4.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),滿足f(2+x)=f(2-x),若函數(shù)y=f(x)在(0,4)上至少有一個(gè)零點(diǎn),且f(0)=0,則函數(shù)y=f(x)在(-8,10]上的零點(diǎn)個(gè)數(shù)至少為9.

分析 判斷f(x)的對稱性和周期性,利用周期性和對稱性得出答案.

解答 解:∵f(2+x)=f(2-x)=f(x-2),
∴f(x)周期為4,
∵f(0)=0,∴f(4)=f(8)=f(-4)=0,
∵f(x)在(0,4)上至少有1個(gè)零點(diǎn),
∴f(x)在(-8,-4),(-4,0),(4,8)上至少有1個(gè)零點(diǎn),
∵f(2+x)=f(2-x),∴f(x)關(guān)于直線x=2對稱,
∴f(x)關(guān)于直線x=10對稱,
∴f(x)在(8,10]上至少存在1個(gè)零點(diǎn),
綜上,f(x)在(-8,10]上至少存在9個(gè)零點(diǎn).
故答案為:9.

點(diǎn)評 本題考查了函數(shù)的對稱性與周期性的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.1340°角是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\frac{1-x}{x}$+lnx,則f(x)在[$\frac{1}{2}$,2]上的最大值等于1-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,設(shè)Ox、Oy是平面內(nèi)相交成45°角的兩條數(shù)軸,$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$分別是x軸、y軸正方向同向的單位向量,若向量$\overrightarrow{OP}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,則把有序數(shù)對(x,y)叫做向量$\overrightarrow{OP}$在坐標(biāo)系xOy中的坐標(biāo),在此坐標(biāo)系下,假設(shè)$\overrightarrow{OA}$=(-2,2$\sqrt{2}$),$\overrightarrow{OB}$=(2,0),$\overrightarrow{OC}$=(5,-3$\sqrt{2}$),則下列命題不正確的是( 。
A.$\overrightarrow{{e}_{1}}$=(1,0)B.|$\overrightarrow{OA}$|=2$\sqrt{3}$C.$\overrightarrow{OA}$∥$\overrightarrow{BC}$D.$\overrightarrow{OA}$⊥$\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了促進(jìn)學(xué)生的全面發(fā)展,鄭州市某中學(xué)重視學(xué)生社團(tuán)文化建設(shè),現(xiàn)用分層抽樣的方法從“話劇社”,“創(chuàng)客社”,“演講社”三個(gè)金牌社團(tuán)中抽取6人組成社團(tuán)管理小組,有關(guān)數(shù)據(jù)見表(單位:人):
社團(tuán)名稱成員人數(shù)抽取人數(shù)
話劇社50a
創(chuàng)客社150b
演講社100c
(1)求a,b,c的值;
(2)若從“話劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔(dān)任管理小組組長,求這2人來自不同社團(tuán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知正三角形ABC的邊長為2,點(diǎn)D是邊BC上一動點(diǎn),點(diǎn)D到AB、AC的距離分別為x、y,則xy的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知復(fù)數(shù)z=bi(b∈R),$\frac{z-2}{1+i}$是實(shí)數(shù),i是虛數(shù)單位.
(1)求復(fù)數(shù)z;
(2)求$|{\frac{1-z}{2+i}}|$
(3)若復(fù)數(shù)(m+z)2所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為$({\sqrt{3},0})$,
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)求雙曲線C的離心率;
(3)求雙曲線C的漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知復(fù)數(shù)z1=1-2i,z2=3+4i,i為虛數(shù)單位.
(Ⅰ)若復(fù)數(shù)|z2|+az1對應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若z(z1+z2)=z1-z2,求z的共軛復(fù)數(shù).

查看答案和解析>>

同步練習(xí)冊答案