若集合A1,A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種分析,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種分析,則集合A={a1,a2,a3}的不同分析種數(shù)是   
【答案】分析:考慮集合A1為空集,有一個(gè)元素,2個(gè)元素,和集合A相等四種情況,由題中規(guī)定的新定義分別求出各自的分析種數(shù),然后把各自的分析種數(shù)相加,利用二次項(xiàng)定理即可求出值.
解答:解:當(dāng)A1=∅時(shí)必須A2=A,分析種數(shù)為1;
當(dāng)A1有一個(gè)元素時(shí),分析種數(shù)為C31•2;
當(dāng)A1有2個(gè)元素時(shí),分析總數(shù)為C32•22
當(dāng)A1=A時(shí),分析種數(shù)為C33•23
所以總的不同分析種數(shù)為1+C31•21+C32•22+C33•23=(1+2)3=27.
故答案為:27
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了分類討論的數(shù)學(xué)思想,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、若集合A1、A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一個(gè)分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種分拆,則集合A={a1,a2,a3}?的不同分拆種數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、若集合A1,A2滿足A1∪A2=A,則記[A1,A2]是A的一組雙子集拆分.規(guī)定:[A1,A2]和[A2,A1]是A的同一組雙子集拆分,已知集合A={1,2,3},那么A的不同雙子集拆分共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A1,A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種分拆,則集合A={1,2,3}的不同分拆種數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A1,A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種分拆,
(1)集合A={a,b}的不同分拆種數(shù)為多少?
(2)集合A={a,b,c}的不同分拆種數(shù)為多少?
(3)由上述兩題歸納一般的情形:集合A={a1,a2,a3,…an}的不同分拆種數(shù)為多少?(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A1,A2滿足A1∪A2=A,則記[A1,A2]是A的一組雙子集拆分.規(guī)定:[A1,A2]和[A2,A1]是A的同一組雙子集拆分,已知集合A={1,2},那么A的不同雙子集拆分共有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案