制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損率分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.則投資人對甲、乙兩個項目各投資分別為
 
 
萬元,才能使可能的盈利最大值為
 
分析:設(shè)投資人分別用x萬元、y萬元投資甲、乙兩個項目,確定不等式與目標函數(shù),作出平面區(qū)域,即可求得結(jié)論.
解答:精英家教網(wǎng)解:設(shè)投資人分別用x萬元、y萬元投資甲、乙兩個項目.由題意知
x+y≤10 
 0.3x+0.1y≤1.8
x≥0
y≥0
,
目標函數(shù)z=x+0.5y.上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.
作直線l0:x+0.5y=0,并作平行于直線l0的一組直線x+0.5y=z,z∈R
與可行域相交,其中有一條直線經(jīng)過可行域上的M點,且與直線x+0.5y=0的距離最大,
這里M點是直線x+y=10和0.3x+0.1y=1.8的交點,
解方程組
x+y=10 
0.3x+0.1y=1.8
 得x=4,y=6,
此時z=1×4+0.5×6=7(萬元).
∵7>0,∴當x=4,y=6時z取得最大值.
答:投資人用4萬元投資甲項目、6萬元投資乙項目,才能在確保虧損不超過1.8萬元的前提下,使可能的盈利最大.
故答案為:4,6;7萬元.
點評:本題考查線性規(guī)劃知識,考查利用數(shù)學知識解決實際問題,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)制定投資計劃時,不僅要考慮可能獲得的贏利,而且要考慮可能出現(xiàn)的虧損。某投資人打算投資甲、乙兩個項目,根據(jù)預(yù)測,甲、乙項目可能的最大贏利率分別為100%和50%,可能的最大虧損率分別為30%和10%,投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元,問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的贏利最大?

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年湖北穩(wěn)派教育高三上學期強化訓練(三)理科數(shù)學試卷(解析版) 題型:解答題

霧霾大氣嚴重影響人們生活,某科技公司擬投資開發(fā)新型節(jié)能環(huán)保產(chǎn)品,策劃部制定投資計劃時,不僅要考慮可能獲得的盈利,而且還要考慮可能出現(xiàn)的虧損,經(jīng)過市場調(diào)查,公司打算投資甲、乙兩個項目,根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%和60%,可能的最大虧損率分別為20%和10%,投資人計劃投資金額不超過10萬元要求確?赡艿馁Y金虧損不超過1.6萬元.

(1)若投資人用萬元投資甲項目,萬元投資乙項目,試寫出、所滿足的條件,并在直角坐標系內(nèi)做出表示范圍的圖形;

(2)根據(jù)(1)的規(guī)劃,投資公司對甲、乙兩個項目投資多少萬元,才能是可能的盈利最大?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期11月月考文科數(shù)學卷 題型:解答題

(12分)制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目. 根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100﹪和50﹪,可能的最大虧損分別為30﹪和10﹪. 投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元. 問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

 

查看答案和解析>>

同步練習冊答案