公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a4是a3與a7的等比中項(xiàng),且S10=60,則S20=( 。
分析:公差不為零的等差數(shù)列{an}中,由a4是a3與a7的等比中項(xiàng),S10=60,利用等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式列方程組解得首項(xiàng)與公差,由此能求出S20
解答:解:∵a4是a3與a7的等比中項(xiàng),S10=60,
(a1+3d)2=(a1+2d)(a1+6d)
10a1+45 d=60
,
∵公差不為零,∴解得a1=-3,d=2,
∴S20=20a1+
20×19
2
d=20×(-3)+190×2=320.
故選C.
點(diǎn)評(píng):本題考查學(xué)生靈活運(yùn)用等差數(shù)列的前n項(xiàng)和的公式及等比數(shù)列的通項(xiàng)公式化簡(jiǎn)求值,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

公差不為零的等差數(shù)列的第1項(xiàng)、第6項(xiàng)、第21項(xiàng)恰好構(gòu)成等比數(shù)列,則它的公比為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)如果公差不為零的等差數(shù)列的第二、第三、第六項(xiàng)構(gòu)成等比數(shù)列,那么其公比為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng);
(Ⅱ)令bn=
1
(an+1)2-1
(n∈N*)
,數(shù)列{bn}的前n項(xiàng)和Tn,證明:Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是公差不為零的等差數(shù)列,數(shù)列{bn}為等比數(shù)列,若b1=a1,b2=a5,b3=a17,則b4等于數(shù)列{an}中的第
53
53
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•武昌區(qū)模擬)已知公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)都在二次函數(shù)y=f(x)的圖象上(如圖).已知函數(shù)y=f(x)的圖象的對(duì)稱軸方程是x=
3
2
.若點(diǎn)(n,an)在函數(shù)y=g(x)的圖象上,則函數(shù)y=g(x)的圖象可能是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案