已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形F1B1 F2B2是一個(gè)面積為8的正方形.

(1)求橢圓C的方程;

(2)已知點(diǎn)P的坐標(biāo)為P(4,0), 過(guò)P點(diǎn)的直線L與橢圓C相交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)G落在正方形內(nèi)(包含邊界)時(shí),求直線L的斜率的取值范圍.

 

【答案】

12

【解析】

試題分析:1依題意需要求橢圓的標(biāo)準(zhǔn)方程,所以要找到兩個(gè)關(guān)于基本量的等式,由以及面積的關(guān)系可求橢圓的方程.

2由于直線與橢圓的相交得到的弦的中點(diǎn)坐標(biāo),可通過(guò)假設(shè)直線方程與橢圓的方程聯(lián)立可求得,判別式要大于零.其中用直線的斜率表示中點(diǎn)坐標(biāo).由于中點(diǎn)在正方形內(nèi),其實(shí)就是要符合一個(gè)不等式的可行域問(wèn)題.因此通過(guò)解不等式即可得到所求的結(jié)論.

試題解析:(1)求得橢圓C的方程為;;

(2)∵點(diǎn)P的坐標(biāo)為(-4,0),顯然直線L的斜率k存在,

∴直線L方程為 如圖設(shè)點(diǎn)MN的坐標(biāo)分別為,

線段MN的中點(diǎn)為,

由△>0解得:

, , ∴點(diǎn)G不可能在y軸的右邊,

又直線F1B2, F1B1的方程分別為.

∴點(diǎn)G在正方形B1F2B1F1內(nèi)的充要條件為:

.

考點(diǎn):1.橢圓的性質(zhì).2.直線與橢圓的位置關(guān)系.3.線性規(guī)劃的知識(shí).4.韋達(dá)定理.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:山東省濟(jì)寧市2012屆高二下學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分) 已知在平面直角坐標(biāo)系xoy中的一個(gè)橢圓,它的中心在原

點(diǎn),左焦

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;

(3)過(guò)原點(diǎn)O的直線交橢圓于點(diǎn)B、C,求△ABC面積的最大值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆山東省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分) 已知在平面直角坐標(biāo)系xoy中的一個(gè)橢圓,它的中心在原

。

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;

(3)過(guò)原點(diǎn)O的直線交橢圓于點(diǎn)B、C,求△ABC面積的最大值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案