解下列方程:
(1)logx(x2-x)=logx2
(2)lo
g
2
5
x-log5x2=3
分析:(1)在滿足對數(shù)式有意義的前提下,化對數(shù)方程為一元二次方程求解;
(2)把原方程化為關(guān)于log5x的一元二次方程,求解后解對數(shù)方程得答案.
解答:解:(1)由logx(x2-x)=logx2,得
x>0且x≠1
x2-x=2
,
解得x=2;
(2)由lo
g
2
5
x-log5x2=3
,得
lo
g
2
5
x-2log5x-3=0

解得log5x=-1或log5x=3.
∴x=
1
5
或x=125.
點評:本題考查了對數(shù)的運算性質(zhì),考查了對數(shù)方程的解法,關(guān)鍵是求得的根要保證對數(shù)式有意義,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.不等式|x+3|-|x-2|≥3的解集為
 

B.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則
BD
DA
=
 

C.已知圓C的參數(shù)方程為
x=cosα
y=1+sinα
(a為參數(shù))以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ=1,則直線l與圓C的交點的直角坐標(biāo)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3x-1,x∈[-1,l],則下列判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(請考生在下列兩題中任選一題作答,若兩題都做,則接所做的第一題計分)
(l)(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系xoy中,曲線C1參數(shù)方程
x=cosa
y=1+sina
(a為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C2的方程為p(cosθ-sinθ)+1=0,則曲線C1與 C2的交點個數(shù)為
2
2

(2)(不等式選做題)若關(guān)于x的不等式ax2-|x-1|+2a<0的解集為空集,則a的取值范圍是
a
3
+1
4
a
3
+1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列四個命題:
(1)一定存在直線l使函數(shù)f(x)=lgx+lg
1
2
的圖象與函數(shù)g(x)=lg(-x)+2的圖象關(guān)于直線l對稱
(2)不等式:arcsinx≤arccosx的解集為[
2
2
,1]
;
(3)已知數(shù)列{an}的前n項和為Sn=1-(-1)n,n∈N*,則數(shù)列{an}一定是等比數(shù)列;
(4)過拋物線y2=2px(p>0)上的任意一點M(x°,y°)的切線方程一定可以表示為y0y=p(x+x0).
則正確命題的序號為
(3)(4)
(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題:

(1)一條直線l一定是某個一次函數(shù)的圖象;

(2)一次函數(shù)y=kx+b的圖象一定是一條不過原點的直線;

(3) 如果一條直線上所有點的坐標(biāo)都是某一個方程的解,那么這個方程叫做這條直線的方程;

(4)如果以一個二元一次方程的解為坐標(biāo)的點都在某一條直線上,那么這條直線叫做這個方程的直線.

其中真命題的個數(shù)是(    )

A.0                B.1                  C.2                 D.3

查看答案和解析>>

同步練習(xí)冊答案