函數(shù)y=
lnx
x
的導(dǎo)數(shù)為( 。
分析:直接根據(jù)(
v
μ
)′=
v′μ-μ′v
μ2
,以及(lnx)′=
1
x
可求出所求.
解答:解:∵y=
lnx
x

∴y′=
1
x
×x-1×lnx
x2
=
1-lnx
x2

故選D.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的運(yùn)算法則,求導(dǎo)公式一定要熟練掌握,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=(1-
x
)(1+
1
x
);
(2)y=
lnx
x
;
(3)y=tanx;
(4)y=xe1-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
lnx
x
的導(dǎo)數(shù)是
y′=
1-lnx
x2
y′=
1-lnx
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
lnx
x
的導(dǎo)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)的圖象與x軸相切于點(diǎn)(-1,0),其導(dǎo)函數(shù)y=f′(x)與直線y=2x平行.
(1)求y=f(x)的解析式;
(2)已知
lim
x→+∞
lnx
x
=0
,試討論方程kf′(x)-lnf(x)=0(k∈R)在區(qū)間(-1,+∞)上解得個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案