數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,2Sn=(n+1)an
(I)求an與an-1的關(guān)系式,并求{an}的通項(xiàng)公式;
(II)求和Wn=
1
a
2
2
-1
+
1
a
2
3
-1
+…+
1
a
2
n+1
-1
分析:(I)由已知,
2Sn=(n+1)an
2Sn-1=nan-1
兩式相減得2an=(n+1)an-nan-1,移向整理得出an=
n
n-1
an-1
(n≥2),再利用累積法求通項(xiàng)公式.
(II)
1
a
2
n+1
-1
=
1
(n+1)2-1
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
,裂項(xiàng)后求和計(jì)算即可.
解答:解:(I)由已知
2Sn=(n+1)an
2Sn-1=nan-1
兩式相減得2an=(n+1)an-nan-1,移向整理得出an=
n
n-1
an-1
(n≥2)

an
a1
=
an
an-1
an-1
an-2
•…•
a2
a1
=
n
n-1
n-1
n-2
•…•
2
1
=n

∴an=n;且a1=1也適合,
所以an=n.
(II)
1
a
2
n+1
-1
=
1
(n+1)2-1
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

Wn=
1
1•3
+
1
2•4
+
1
3•5
+…+
1
n(n+2)
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)
+(
1
3
-
1
5
)+…+(
1
n-1
-
1
n+1
)+( 
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)=
3
4
-
2n+3
2n(n+1)
點(diǎn)評(píng):本題考查數(shù)列累積法通項(xiàng)公式求解,裂項(xiàng)法求和.考查轉(zhuǎn)化、變形構(gòu)造,計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項(xiàng)的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的通項(xiàng)an=
1
pn-q
,實(shí)數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證:當(dāng)n≥2時(shí),pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
1
2
,
1
3
,
2
3
,
1
4
,
2
4
,
3
4
,
1
5
2
5
,
3
5
,
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運(yùn)算和結(jié)論:
①a24=
3
8
;
②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為Tn=
n2+n
4
;
④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案