3.在等比數(shù)列{an}中,a1=$\frac{1}{3},2{a_2}={a_4}$,則a5等于(  )
A.$\frac{4}{3}$B.$\frac{6}{3}$C.$\frac{8}{3}$D.$\frac{16}{3}$

分析 利用等比數(shù)列的通項公式即可得出.

解答 解:設等比數(shù)列{an}的公比為q,∵2a2=a4,∴$2{a}_{1}q={a}_{1}{q}^{3}$,
解得q2=2,
則a5=${a}_{1}{q}^{4}$=$\frac{1}{3}×{2}^{2}$=$\frac{4}{3}$.
故選:A.

點評 本題考查了等比數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x-1|.
(1)求不等式f(x)<4的解集;
(2)若函數(shù)g(x)=f(x)+f(x-1)的最小值為a,且m+n=a(m>0,n>0),求$\frac{2}{m}+\frac{1}{n}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知集合A={x|0<x-m<3},B={x|x≤0或x≥3},
(1)當m=1時,求A∩B
(2)當A∪B=B時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=2x在點A(1,2)處切線的斜率為2ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若${log_a}\frac{4}{5}<1$(a>0,且a≠1),則實數(shù)a的取值范圍是( 。
A.$(0,\frac{4}{5})$B.$(\frac{4}{5},+∞)$C.$(\frac{4}{5},1)$D.$(0,\frac{4}{5})∪(1,+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知等比數(shù)列{an}的前n項和為Sn,且4a1,2a2,a3依次等差數(shù)列,若a1=1,則S5=(  )
A.16B.31C.32D.63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在等比數(shù)列{an}中,${a}_{2}{a}_{3}{a}_{4}=\frac{27}{64}$,公比q=2,數(shù)列{bn}是等差數(shù)列,且b7=a5,則b3+b11=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若某圓柱體的上部挖掉一個半球,下部挖掉一個圓錐后所得的幾何體的三視圖中的正(主)視圖和側(左)視圖如圖所示,則此幾何體的表面積是(  )
A.(4+$\sqrt{2}$)πB.6$π+2\sqrt{2}π$C.6$π+\sqrt{2}π$D.(8+$\sqrt{2}$)π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知x∈(0,+∞)有下列各式:x+$\frac{1}{x}$≥2,x+$\frac{4}{{x}^{2}}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$=$\frac{x}{3}$+$\frac{x}{3}$+$\frac{x}{3}$+$\frac{27}{{x}^{3}}$≥4成立,觀察上面各式,按此規(guī)律若x+$\frac{a}{{x}^{4}}$≥5,則正數(shù)a=44

查看答案和解析>>

同步練習冊答案