3.實(shí)數(shù)x、y滿足條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,則,z=-2x+y的最小值為-9.

分析 本題主要考查線性規(guī)劃的基本知識(shí),先畫出約束條件 的可行域,再求出可行域中各角點(diǎn)的坐標(biāo),將各點(diǎn)坐標(biāo)代入目標(biāo)函數(shù)的解析式,分析后易得目標(biāo)函數(shù)-2x+y的最小值.

解答 解:由約束條件得如圖所示的三角形區(qū)域,
令2x-y=z,
顯然當(dāng)平行直線2x-y=z過點(diǎn)C時(shí),z取得最小值,
由$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$,可得C(3,-3),
z=-2x+y的最小值為:-9.
故答案為:-9.

點(diǎn)評(píng) 在解決線性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.為了得到函數(shù)y=sin(2x+1)的圖象,只需把函數(shù)y=sin2x的圖象上所有的點(diǎn)( 。
A.向左平行移動(dòng)$\frac{1}{2}$個(gè)長(zhǎng)度單位B.向右平行移動(dòng)$\frac{1}{2}$個(gè)長(zhǎng)度單位
C.向左平行移動(dòng)1個(gè)長(zhǎng)度單位D.向右平行移動(dòng)1個(gè)長(zhǎng)度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x4=a(x-1)4+b(x-1)3+c(x-1)2+d(x-1)+e,則a+b+c+d等于( 。
A.0B.15C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若復(fù)數(shù)z滿足(1-i)2z=1(i為虛數(shù)單位),則復(fù)數(shù)z=$\frac{i}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,求向量$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+$\frac{1}{x}$+2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求f(x)的解析式;
(2)求f(x)在(0,8]內(nèi)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)是定義在[5-2a,a]上的奇函數(shù),且當(dāng)x∈[-5,0)時(shí),f(x)=-x (4-x).
(1)f(x)的解析式;
(2)求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={-2,-1,0,1,2},B={x|-2<x<2},則A∩B=(  )
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-1,0,1,2}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.圓(x+2)2+y2=4與圓x2+y2-2x-2y+1=0( 。
A.內(nèi)切B.相交C.外切D.相離

查看答案和解析>>

同步練習(xí)冊(cè)答案