銳角△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,且a=3,C=60°,△ABC的面積等于數(shù)學公式,求邊長b和c.

解:∵銳角△ABC中,C=60°,,---------(2分)
,代入,可得b=2.----------(6分)
再由余弦定理可得,-----(10分)
.-------(12分)
分析:先求出,再由△ABC的面積等于,可求得b=2,再利用余弦定理求出c的值.
點評:本題主要考查正弦定理、余弦定理的應用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知銳角△ABC中的內(nèi)角A、B、C的對邊分別為a,b,c,定義向量
m
=(2sinB,-
3
),
n
=(cos2B,2cos2
B
2
-1)且
m
n

(1)求函數(shù)f(x)=sin2xcosB-cos2xsinB的單調(diào)遞增區(qū)間;
(2)如果b=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江)在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB=
3
b.
(Ⅰ)求角A的大;
(Ⅱ)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,且
3
a=2csinA

(Ⅰ)求∠C
(Ⅱ)若c=2,a+b=ab,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a=2bsinA,
(1)求角B的值;   
(2)設(shè)a=3
3
,c=5,求b
及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知c=2,2sin2C-2cos2C=1.求
(1)△ABC外接圓半徑;
(2)當B=
12
時,求a的大。

查看答案和解析>>

同步練習冊答案