(文)若a、b、c是△ABC的三邊,直線ax+by+c=0與圓x2+y2=1相離,則△ABC一定是

[  ]
A.

直角三角形

B.

等邊三角形

C.

銳角三角形

D.

鈍角三角形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B,C是三角形的三邊
(1)(文)若c=1,a,b是從{1,2,3,4,5,6}中任取的兩個(gè)數(shù)(a,b可以相等),求a,b,c能構(gòu)成三角形的概率;
(2)(文)若a,b是從(0,6)中任取的兩個(gè)數(shù)(a,b可以相等),求構(gòu)成以a為底邊的等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)對(duì)于任意的平面向量
a
=(x1,y1),
b
=(x2,y2)
,定義新運(yùn)算⊕:
a
b
=(x1+x2,y1y2)
.若
a
b
,
c
為平面向量,k∈R,則下列運(yùn)算性質(zhì)一定成立的所有序號(hào)是
①③
①③

a
b
=
b
a
;            
(k
a
)⊕
b
=
a
⊕(k
b
)
;
a
⊕(
b
c
)=(
a
b
)⊕
c
;   
a
⊕(
b
+
c
)=
a
b
+
a
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理8,文9)設(shè)a、b、c是△ABC的三條邊,若a、b、c成等比數(shù)列,且c=2a,則cosB等于

A.               B.              C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知A、B、C是直線l上的三點(diǎn),向量滿足:-[y+2f′(1)]+ln(x+1) =0,函數(shù)g(x)=+af(x).

(1)求函數(shù)y=f(x)的表達(dá)式;

(2)若g(x)在點(diǎn)(3,g(3))處的切線與直線7x-18y+3=0平行,求函數(shù)g(x)的極值;

(3)若函數(shù)g(x)在(0,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

(文)已知A、B、C是直線l上的三點(diǎn),且滿足:-(y+ax2)+(x3+3x)=0.

(1)若f(x)在點(diǎn)(1,f(3))處的切線與直線2x+y+3=0平行,求函數(shù)y=f(x)的極值;

(2)若函數(shù)y=f(x)在(-2,)上單調(diào)遞減,求實(shí)數(shù)口的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案