已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y均有f(x+y)+2=f(x)+f(y),且當(dāng)x>0時(shí),f(x)>2,f(3)=5,求不等式f(a2-2a-2)<3的解.
【答案】分析:本題考查的是抽象函數(shù)問題,已知抽象函數(shù)的運(yùn)算性質(zhì),常用“賦值法”.有具體函數(shù)背景的抽象函數(shù)問題,如果是客觀題,可以用具體函數(shù)求解.如本題:可設(shè)f(x)=kx+b,根據(jù)條件求出k、b,再解不等式.
解答:解:解抽象函數(shù)的不等式,需知函數(shù)的單調(diào)性;
用定義:任取x1<x2,x2-x1>0,則f(x2-x1)>2
∴f(x2)+f(-x1)-2>2
∴f(x2)+f(-x1)>4;
對(duì)f(x+y)+2=f(x)+f(y)取x=y=0得:
f(0)=2,再取y=-x得f(x)+f(-x)=4即f(-x)=4-f(x),
∴有f(x2)+4-f(x1)>4
∴f(x2)>f(x1
∴f(x)在R上遞增,
又f(3)=f(2)+f(1)-2=f(1)+f(1)-2+f(1)-2=3f(1)-4=5
∴f(1)=3;
于是:不等式f(a2-2a-2)<3等價(jià)于f(a2-2a-2)<f(1)
∴a2-2a-2<1
∴-1<a<3.
所以不等式的解集為:a|-1<a<3.
點(diǎn)評(píng):本題考查的是抽象函數(shù)及其應(yīng)用問題.在解答的過程當(dāng)中充分體現(xiàn)了函數(shù)單調(diào)性的應(yīng)用、抽象不等式的轉(zhuǎn)化以及二次不等式的解法.值得同學(xué)們體會(huì)和反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數(shù)圖象上的任一點(diǎn)P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對(duì)任意x∈R成立;
(3)若f(x)≥kx+b對(duì)任意x∈[0,+∞)成立,求實(shí)數(shù)k、b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
(1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab
ab
;
(3)已知函數(shù)f(x)的定義域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab
;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
ex+1

(Ⅰ)證明函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,
1
2
)對(duì)稱;
(Ⅱ)設(shè)y=f-1(x)為y=f(x)的反函數(shù),令g(x)=f-1(
x+1
x+2
),是否存在實(shí)數(shù)b
,使得任給a∈[
1
4
1
3
],對(duì)任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)一模)已知函數(shù)f(x)=
1,x∈Q
0,x∈CRQ
,則f(f(x))=
1
1

下面三個(gè)命題中,所有真命題的序號(hào)是
①②③
①②③

①函數(shù)f(x)是偶函數(shù);
②任取一個(gè)不為零的有理數(shù)T,f(x+T)=f(x)對(duì)x∈R恒成立;
③存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案