【題目】已知直線(xiàn)l在直角坐標(biāo)系xOy中的參數(shù)方程為 為參數(shù),θ為傾斜角),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,在極坐標(biāo)系中,曲線(xiàn)的方程為ρ﹣ρcos2θ﹣4cosθ=0.
(1)寫(xiě)出曲線(xiàn)C的直角坐標(biāo)方程;
(2)點(diǎn)Q(a,0),若直線(xiàn)l與曲線(xiàn)C交于A、B兩點(diǎn),求使 為定值的值.

【答案】
(1)解:∵ρ﹣ρcos2θ﹣4cosθ=0,∴ρ2﹣ρ2cos2θ﹣4ρcosθ=0,

∴x2+y2﹣x2﹣4x=0,即y2=4x.


(2)解:把為 為參數(shù),θ為傾斜角)代入y2=4x得:

sin2θt2﹣4cosθt﹣4a=0,

∴t1+t2= ,t1t2=﹣

= = = = ,

∴當(dāng)a=2時(shí), 為定值


【解析】(1)極坐標(biāo)方程兩邊同乘ρ,根據(jù)極坐標(biāo)與直角坐標(biāo)的對(duì)于關(guān)系得出直角坐標(biāo)方程;(2)把直線(xiàn)l的參數(shù)方程代入曲線(xiàn)C的方程,利用根與系數(shù)的關(guān)系和參數(shù)的幾何意義化簡(jiǎn)即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)命題: ①已知隨機(jī)變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為 ;
②設(shè)a、b∈R,則“l(fā)og2a>log2b”是“2ab>1”的充分不必要條件;
③函數(shù)f(x)= ﹣( x的零點(diǎn)個(gè)數(shù)為1;
④命題p:n∈N,3n≥n2+1,則¬p為n∈N,3n≤n2+1.
其中真命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC= AA1=1,D是棱AA1上的點(diǎn),DC1⊥BD
(Ⅰ)求證:D為AA1中點(diǎn);
(Ⅱ)求直線(xiàn)BC1與平面BDC所成角正弦值大;
(Ⅲ)在△ABC邊界及內(nèi)部是否存在點(diǎn)M,使得B1M⊥面BDC,存在,說(shuō)明M位置,不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1 + =1(b>0)的左、右焦點(diǎn)分別為F1、F2 , 點(diǎn)F2也為拋物線(xiàn)C2:y2=8x的焦點(diǎn),過(guò)點(diǎn)F2的直線(xiàn)l交拋物線(xiàn)C2于A,B兩點(diǎn).
(Ⅰ)若點(diǎn)P(8,0)滿(mǎn)足|PA|=|PB|,求直線(xiàn)l的方程;
(Ⅱ)T為直線(xiàn)x=﹣3上任意一點(diǎn),過(guò)點(diǎn)F1作TF1的垂線(xiàn)交橢圓C1于M,N兩點(diǎn),求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某沿海四個(gè)城市A,B,C,D的位置如圖所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30 nmile,AD=70 nmile,D位于A的北偏東75°方向.現(xiàn)在有一艘輪船從A出發(fā)向直線(xiàn)航行,一段時(shí)間到達(dá)D后,輪船收到指令改向城市C直線(xiàn)航行,收到指令時(shí)城市C對(duì)于輪船的方位角是南偏西θ度,則sinθ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某沿海四個(gè)城市A、B、C、D的位置如圖所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30 nmile,CD=250 nmile,D位于A的北偏東75°方向.現(xiàn)在有一艘輪船從A出發(fā)以50nmile/h的速度向D直線(xiàn)航行,60min后,輪船由于天氣原因收到指令改向城市C直線(xiàn)航行,收到指令時(shí)城市C對(duì)于輪船的方位角是南偏西θ度,則sinθ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x+ |(a>0,m∈R,m≠0).
(1)當(dāng)a=2時(shí),求不等式f(x)>3的解集;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)為偶函數(shù),當(dāng)x<0時(shí),f(x)=ln(﹣x)﹣ax.若直線(xiàn)y=x與曲線(xiàn)y=f(x)至少有兩個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入n=5,則輸出的S值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案