精英家教網 > 高中數學 > 題目詳情

設橢圓雙曲線拋物線

的離心率分別為,則

    A.         B.    

    C.         D.關系不確定

 

【答案】

C

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)設雙曲線與橢圓
x2
27
+
y2
36
=1
有相同的焦點,且與橢圓相交,一個交點A的縱坐標為4,求此雙曲線的標準方程.
(2)設橢圓
x2
m2
+
y2
n2
=1
(m>0,n>0)的右焦點與拋物線y2=8x的焦點相同,離心率為
1
2
,求橢圓的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)設橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦點與拋物線y2=8x的焦點相同,離心率為
1
2
,求橢圓的標準方程.
(2)設雙曲線與橢圓
x2
27
+
y2
36
=1有相同的焦點,且與橢圓相交,一個交點A的縱坐標為4,求此雙曲線的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出4個命題:
(1)設橢圓長軸長度為2a(a>0),橢圓上的一點P到一個焦點的距離是
2
3
a
,P到一條準線的距離是
8
3
a
,則此橢圓的離心率為
1
4

(2)若橢圓
x2
a2
+
y2
b2
=1
(a≠b,且a,b為正的常數)的準線上任意一點到兩焦點的距離分別為d1,d2,則|d12-d22|為定值.
(3)如果平面內動點M到定直線l的距離與M到定點F的距離之比大于1,那么動點M的軌跡是雙曲線.
(4)過拋物線焦點F的直線與拋物線交于A、B兩點,若A、B在拋物線準線上的射影分別為A1、B1,則FA1⊥FB1
其中正確命題的序號依次是
(2)(4)
(2)(4)
.(把你認為正確的命題序號都填上)

查看答案和解析>>

科目:高中數學 來源:2011年福建省福州市高二上學期期末考試數學文卷 題型:選擇題

(設橢圓雙曲線拋物線的離心率分別為,則

     A.                          B.     

     C.                          D.關系不確定

 

查看答案和解析>>

同步練習冊答案