分析 (1)求出函數的導數,利用切線與x軸平行,推出結果.
(2)求出函數的導數與函數g(x)的定義域,通過當a=0時,當a>0時,分別求解函數的極值點,判斷函數的單調性,即可得到結論.
解答 解:(1)依題意得g(x)=lnx+ax2+bx,
則$g'(x)=\frac{1}{x}+2ax+b$…(2分)
由函數g(x)的圖象在點(1,g(1))處的切線平行于x軸得:g'(1)=1+2a+b=0,
∴b=-2a-1…(4分)
(2)由(1)得$g'(x)=\frac{{2a{x^2}-({2a+1})x+1}}{x}=\frac{{({2ax-1})({x-1})}}{x}$.
∵函數g(x)的定義域為(0,+∞),
∴當a=0時,$g'(x)=-\frac{x-1}{x}$.
由g'(x)>0,得0<x<1,由g'(x)<0,得x>1,…(6分)
當a>0時,令g'(x)=0,得x=1或$x=\frac{1}{2a}$,…(7分)
若$\frac{1}{2a}<1$,即$a>\frac{1}{2}$,
由g'(x)>0,得x>1或$0<x<\frac{1}{2a}$,
由g'(x)<0,得$\frac{1}{2a}<x<1$;…(9分)
若$\frac{1}{2a}>1$,即$0<a<\frac{1}{2}$,
由g'(x)>0,得$x>\frac{1}{2a}$或0<x<1,
由g'(x)<0,得$1<x<\frac{1}{2a}$…(11分)
若$\frac{1}{2a}=1$,即$a=\frac{1}{2}$,在(0,+∞)上恒有g'(x)≥0…(12分)
綜上可得:當a=0時,函數g(x)在(0,1)上單調遞增,在(1,+∞)上單調遞減;
當$0<a<\frac{1}{2}$時,函數g(x)在(0,1)上單調遞增,
在$({1,\frac{1}{2a}})$上單調遞減,在$({\frac{1}{2a},+∞})$上單調遞增;
當$a=\frac{1}{2}$時,函數g(x)在(0,+∞)上單調遞增;
當$a>\frac{1}{2}$時,函數g(x)在$({0,\frac{1}{2a}})$上單調遞增,
在$({\frac{1}{2a},1})$上單調遞減,在(1,+∞)上單調遞增.
點評 本題考查函數的導數的綜合應用,函數的切線方程以及函數的單調性,考查分類討論思想以及轉化思想的應用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 5 | B. | 8 | C. | 11 | D. | 14 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com