精英家教網 > 高中數學 > 題目詳情
如圖,在四棱錐E﹣ABCD中,四邊形ABCD為平行四邊形,BE=BC,AE⊥BE,M為CE上一點,且BM⊥平面ACE.
(1)求證:AE⊥BC;
(2)如果點N為線段AB的中點,求證:MN∥平面ADE.
證明:(1)因為BM⊥平面ACE,AE平面ACE,
所以BM⊥AE.
因為AE⊥BE,且BE∩BM=B,BE、BM平面EBC,
所以AE⊥平面EBC.
因為BC平面EBC,
所以AE⊥BC.
(2)取DE中點H,連接MH、AH.
因為BM⊥平面ACE,EC平面ACE,
所以BM⊥EC.
因為BE=BC,所以M為CE的中點.
所以MH為△EDC的中位線.所以MH∥ ,且MH= .
因為四邊形ABCD為平行四邊形,
所以DC∥AB,且DC=AB.
故MH∥ ,且MH= 
因為N為AB中點,
所以MH∥AN,且MH=AN.
所以四邊形ANMH為平行四邊形,
所以MN∥AH.
因為MN平面ADE,AH平面ADE,
所以MN∥平面ADE.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°,F為AE中點.
(Ⅰ)求證:平面ADE⊥平面ABE;
(Ⅱ)求二面角A-EB-D的大小的余弦值;
(Ⅲ)求點F到平面BDE的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°.
(I)求證:平面ADE⊥平面ABE;
(II)求二面角A-EB-D的大小的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•貴陽二模)如圖,在四棱錐E-ABCD中,矩形ABCD所在的平面與平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F,G,H分別為BE,AE,BC的中點
(Ⅰ)求證:DE∥平面FGH;
(Ⅱ)若點P在直線GF上,
GP
GF
,且二面角D-BP-A的大小為
π
4
,求λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•淮南二模)如圖,在四棱錐E-ABCD中,四邊形ABCD為平行四邊形,BE=BC,AE⊥BE,M為CE上一點,且BM⊥面ACE.
(1)求證:AE⊥BC;
(2)若點N為線段AB的中點,求證:MN∥面ADE;
(3)若 BE=4,CE=4
2
,且二面角A-BC-E的大小為45°,求三棱錐C-ABE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,

AB=BC=CE=2CD=2,∠BCE=1200,F為AE中點。

(Ⅰ) 求證:平面ADE⊥平面ABE ;

(Ⅱ) 求二面角A—EB—D的大小的余弦值;

(Ⅲ)求點F到平面BDE的距離。

查看答案和解析>>

同步練習冊答案