已知四棱錐P-ABCD的底面是邊長(zhǎng)為a的正方形,側(cè)棱PA⊥底面ABCD,E為PC上的點(diǎn)且CE:CP=1:4,則在線段AB上是否存在點(diǎn)F使EF∥平面PAD.

【答案】分析:分別取PB、AB、CD的一個(gè)四等份點(diǎn)F、G、H,連接EF、FG、GH、HE,要證明EF∥平面PAD,只需證明平面EFGH∥平面PAD即可.
解答:解:分別取PB、AB、CD的一個(gè)四等份點(diǎn)F、G、H,
連接EF、FG、GH、HE,
要證明EF∥平面PAD,只需證明平面EFGH∥平面PAD即可.
∵CE:CP=1:4,BG:BP=1:4,BF:BA=1:4,CH:CB=1:4
∴EG∥BC∥FH,F(xiàn)G∥PA,EH∥PB,
∴四邊形FGEH為平面四邊形,
且FH∥AD.FG∥PA
∴平面EGFH∥平面PAD
又FE?平面EGFH,F(xiàn)E?平面PAD,
∴EF∥平面PAD.
則在線段AB上是否存在點(diǎn)F,且點(diǎn)F為AB的一個(gè)四等分點(diǎn),使EF∥平面PAD.
點(diǎn)評(píng):本題考查直線與平面平行的判定,考查學(xué)生的邏輯思維能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側(cè)面PBC⊥底面ABCD,O是BC的中點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)求證:PA⊥BD
(3)若二面角D-PA-O的余弦值為
10
5
,求PB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點(diǎn),AE與BD交于O點(diǎn),AB=BC=2CD=2,BD⊥PE.
(1)求證:平面PAE⊥平面ABCD; 
(2)若直線PA與平面ABCD所成角的正切值為
5
2
,PO=2,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點(diǎn),PC⊥平面BDE.
(Ⅰ)求證:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濟(jì)寧一中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案