已知sinα•cosα=
1
8
,且
π
4
<α<
π
2
,則cosα-sinα=
 
分析:根據(jù)α的范圍,確定cosα-sinα的符號(hào),然后利用平方,整體代入,開方可得結(jié)果.
解答:解:因?yàn)?span id="gyykyzj" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
π
4
<α<
π
2
,所以cosα-sinα<0,所以(cosα-sinα)2=1-2sinα•cosα=1-2×
1
8
=
3
4
,
所以cosα-sinα=-
3
2

故答案為:-
3
2
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的化簡(jiǎn)求值,注意平方關(guān)系的應(yīng)用,角的范圍以及三角函數(shù)的符號(hào)是解題的關(guān)鍵,考查計(jì)算能力,推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=
7
13
(0<α<π),則tanα=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα-cosα=
2
,求sin2α的值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=
15
且0<α<π,求值:
(1)sin3α-cos3α;  
(2)tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ+cosθ=
2
2
(0<θ<π),則cos2θ的值為
-
3
2
-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ+cosθ=
15
,0<θ<π
,求下列各式的值:
(1)sinθ•cosθ
(2)sinθ-cosθ
(3)tanθ

查看答案和解析>>

同步練習(xí)冊(cè)答案