已知
(1)若曲線處的切線與直線平行,求a的值;
(2)當時,求的單調區(qū)間.
(1);(2)單調遞增區(qū)間為,;單調遞減區(qū)間為

試題分析:(1)先求導,由直線方程可知此直線斜率為2,則曲線處的切線的斜率也為2.由導數(shù)的幾何意義可知。即可得的值。(2)先求導,再令導數(shù)大于0得增區(qū)間,令導數(shù)小于0得減區(qū)間。
(1) 由題意得

            6分
(2) ∵ ,∴  
,令,得
,得
單調遞增區(qū)間為,
單調遞減區(qū)間為            13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)(2011•重慶)設f(x)=x3+ax2+bx+1的導數(shù)f′(x)滿足f′(1)=2a,f′(2)=﹣b,其中常數(shù)a,b∈R.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程.
(Ⅱ)設g(x)=f′(x)e﹣x.求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)當 時,求處的切線方程;
(2)設函數(shù),
(ⅰ)若函數(shù)有且僅有一個零點時,求的值;
(ⅱ)在(。┑臈l件下,若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在R上的函數(shù)f(x)的導函數(shù)為f′(x),已知f(x+1)是偶函數(shù),(x-1)f′(x)<0.若x1<x2,且x1+x2>2,則f(x1)與f(x2)的大小關系是(  )
A.f(x1)<f(x2)B.f(x1)=f(x2)
C.f(x1)>f(x2)D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知都是定義在R上的函數(shù),,且,且,在有窮數(shù)列中,任意取前項相加,則前項和大于的概率是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線f(x)=·ex-f(0)x+x2在點(1,f(1))處的切線方程為____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線在點處的切線方程為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù)的圖象記為E.過點作曲線E的切線,這樣的切線有且僅有兩條,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,,……,,,則(  )
A.B.C. D.

查看答案和解析>>

同步練習冊答案