已知數(shù)列的通項(xiàng)公式,則取最小值時(shí)= ,
此時(shí)= .
18 -324
解析試題分析:由an=2n﹣37,知{an}是首項(xiàng)為﹣35,公差為2的等差數(shù)列,故=n2﹣36n=(n﹣18)2﹣324,由此能得到當(dāng)n=18時(shí),Sn取最小值﹣324.解:∵an=2n﹣37,∴a1=2﹣37=﹣35,a2=4﹣37=﹣33,d=a2﹣a1=33+35=2,∴{an}是首項(xiàng)為﹣35,公差為2的等差數(shù)列,∴=n2﹣36n=(n﹣18)2﹣324,∴當(dāng)n=18時(shí),Sn取最小值S18=﹣324.故答案為:18,﹣324.
考點(diǎn):等差數(shù)列的前n項(xiàng)和
點(diǎn)評(píng):本題考查等差數(shù)列的前n項(xiàng)和的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意配方法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知等差數(shù)列的前項(xiàng)和為,若,且三點(diǎn)共線(該直線不過(guò)點(diǎn)),則_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
無(wú)窮等差數(shù)列{an}各項(xiàng)都是正數(shù),Sn是它的前n項(xiàng)和,若a1+a3+a8=a42,則a5·S4的最大值是______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com