已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).

(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;

(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項(xiàng)和為T(mén)n.求滿足不等式>2 010的n的最小值.

 

【答案】

(1)an=2n-1.(2)10

【解析】

試題分析:(1)由將前n項(xiàng)和化為通項(xiàng)公式關(guān)系式,利用等比數(shù)列定義證明;(2)有一個(gè)等差數(shù)列與一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的積構(gòu)成的新數(shù)列的和,通常將和式兩邊乘公比,再兩式相減,得新等比數(shù)列,此法稱錯(cuò)位相消法.

試題解析:(1)因?yàn)镾n+n=2an,所以Sn1=2an1-(n-1)(n≥2,n∈N*).兩式相減,得an=2an1+1.

所以an+1=2(an1+1)(n≥2,n∈N*),所以數(shù)列{an+1}為等比數(shù)列.

因?yàn)镾n+n=2an,令n=1得a1=1.a1+1=2,所以an+1=2n,所以an=2n-1.

(2)因?yàn)閎n=(2n+1)an+2n+1,所以bn=(2n+1)·2n.

所以Tn=3×2+5×22+7×23+…+(2n-1)·2n1+(2n+1)·2n, ①

2Tn=3×22+5×23+…+(2n-1)·2n+(2n+1)·2n1, ②

①-②,得-Tn=3×2+2(22+23+…+2n)-(2n+1)·2n1

=6+2×-(2n+1)·2n1=-2+2n2-(2n+1)·2n1=-2-(2n-1)·2n1.

所以Tn=2+(2n-1)·2n1.

若>2 010,則>2 010,即2n1>2 010.

由于210=1 024,211=2 048,所以n+1≥11,即n≥10.

所以滿足不等式>2 010的n的最小值是10.

考點(diǎn):等比數(shù)列的定義及判斷方法;錯(cuò)位相消法.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案