如圖所示,直線PB與圓O相切于點B,D是弦AC上的點,∠PBA=∠DBA.若AD=m,AC=n,則AB=    .

【解析】由題意知∠ABP=∠ACB=∠ABD.

又∠A=∠A,所以△ABD∽△ACB,所以=,所以AB==.

答案:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,且AB=2,PA⊥平面ABCD,∠ABC=60°,E是BC的中點.
(1)求證:AE⊥PD;
(2)若H為PD上的動點,EH與平面PAD所成的最大角的正切值為
6
2

①求PA的長度;
②當(dāng)H為PD的中點時,求異面直線PB與EH所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河池模擬)在如圖所示的四棱錐P-ABCD中,已知 PA⊥平面ABCD,AB∥DC,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點.
(Ⅰ)求證:MC∥平面PAD;
(Ⅱ)求證:平面PAC⊥平面PBC;
(Ⅲ)求直線MC與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,拋物線關(guān)于x軸對稱,它的頂點在坐標(biāo)原點,點P(1,2),A(x1,y1),B(x2,y2)均在拋物線上.當(dāng)PA與PB的斜率存在且傾斜角互補時,直線AB的斜率為定值.這個定值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在四棱錐P-ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD交于點O,PO⊥平面ABCD,PB與平面ABCD所成的角為60°,則異面直線BC與PA所成角的余弦值是( 。

查看答案和解析>>

同步練習(xí)冊答案